Skip to main content
Top
Published in:

07-02-2024

Flexible CNT/silicon piezo-resistive strain sensors geometrical influences on sensitivity for human motion detection

Authors: Syed Muzamil Ahmed, Norhayati Soin, Sharifah Fatmadiana Wan Muhamad Hatta, Yasmin Abdul Wahab

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Developing flexible, extremely sensitive strain sensors with a broad operating range is critical for applications such as healthcare, human motion, human–machine interface, and robotics. The COMSOL Multiphysics Finite Element Modeling software has been used to simulate serpentine geometry CNT-silicon-based flexible piezo-resistive (PZR) strain sensors with various sensor line thicknesses (LT), line widths (LW), pitches (P), and structures (Str whereby Str1 is P in the x-direction, and Str2 is P in the y-direction). Their effect on mechanical and piezo-resistive characteristics for strain ranging from 0 to 100% has been studied. The responses of the proposed modeled sensors have been simulated and analyzed in terms of numerous variables, including maximum displacement, von Mises stress, and sensor sensitivity. The simulation study concluded that for the Str1 structure, the PZR strain sensor with P (0.5 mm), LT (0.5 mm), and LW (1.5 mm) had the highest sensitivity (GF 120.50), while the PZR strain sensor with P (0.5 mm), LT (0.5 mm), and LW (1.5 mm) had the lowest sensitivity (GF 48.99). It is also found that the sensitivity of the Str1 PZR strain sensors rises when LW increases while P and LT decrease. Furthermore, the PZR strain sensor with P (0.5 mm), LT (0.5 mm), and LW (1 mm) of structure Str2 has the highest sensitivity (GF 165.95), and the PZR strain sensor with P (1.5 mm), LT (0.5 mm) and LW (0.5 mm) showed the lowest sensitivity (GF 161.62) among all the Str2 sensors, and it is revealed that the sensitivity increases with the decrease of P and LT while the effect of LT is not apparent. As a result, the modeled sensor can be employed as a highly sensitive PZR strain sensor with an excellent capability to monitor a wide range of human motions over the range of 0–100% strain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Du, J., et al.: Optimized CNT-PDMS flexible composite for attachable health-care device. Sensors 20(16), 4523 (2020)CrossRef Du, J., et al.: Optimized CNT-PDMS flexible composite for attachable health-care device. Sensors 20(16), 4523 (2020)CrossRef
2.
go back to reference Duan, L., D’Hooge, D.R., Cardon, L.: Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020)CrossRef Duan, L., D’Hooge, D.R., Cardon, L.: Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020)CrossRef
3.
go back to reference Chu, Z., et al.: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 9(15), 9634–9643 (2021)CrossRef Chu, Z., et al.: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 9(15), 9634–9643 (2021)CrossRef
4.
go back to reference Baloda, S., et al.: Development and analysis of graphene nanoplatelets (GNPS)-based flexible strain sensor for health monitoring applications. IEEE Sens. J. 20(22), 13302–13309 (2020)CrossRef Baloda, S., et al.: Development and analysis of graphene nanoplatelets (GNPS)-based flexible strain sensor for health monitoring applications. IEEE Sens. J. 20(22), 13302–13309 (2020)CrossRef
5.
go back to reference Chen, X., et al.: High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Adv. 10(44), 26188–26196 (2020)CrossRef Chen, X., et al.: High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Adv. 10(44), 26188–26196 (2020)CrossRef
6.
go back to reference Won, P., et al.: Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021)CrossRef Won, P., et al.: Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021)CrossRef
7.
go back to reference An, T., et al.: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy 77, 105295 (2020)CrossRef An, T., et al.: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy 77, 105295 (2020)CrossRef
8.
go back to reference Aroganam, G., Manivannan, N., Harrison, D.: Review on wearable technology sensors used in consumer sport applications. Sensors 19(9), 1983 (2019)CrossRef Aroganam, G., Manivannan, N., Harrison, D.: Review on wearable technology sensors used in consumer sport applications. Sensors 19(9), 1983 (2019)CrossRef
9.
go back to reference Yeo, J.C., Lim, C.T.: Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016)CrossRef Yeo, J.C., Lim, C.T.: Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016)CrossRef
10.
go back to reference Wen, N., et al.: Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8(48), 25499–25527 (2020)CrossRef Wen, N., et al.: Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8(48), 25499–25527 (2020)CrossRef
11.
go back to reference Gu, Y., et al.: Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res. Lett. 14(1), 1–15 (2019)CrossRef Gu, Y., et al.: Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res. Lett. 14(1), 1–15 (2019)CrossRef
12.
go back to reference Heo, J.S., Hossain, M.F., Kim, I.: Challenges in design and fabrication of flexible/stretchable carbon-and textile-based wearable sensors for health monitoring: a critical review. Sensors 20(14), 3927 (2020)CrossRef Heo, J.S., Hossain, M.F., Kim, I.: Challenges in design and fabrication of flexible/stretchable carbon-and textile-based wearable sensors for health monitoring: a critical review. Sensors 20(14), 3927 (2020)CrossRef
13.
go back to reference Gao, Y., et al.: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020)CrossRef Gao, Y., et al.: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020)CrossRef
14.
go back to reference Nag, A., et al.: Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021)CrossRef Nag, A., et al.: Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021)CrossRef
15.
go back to reference Homayounfar, S.Z., Andrew, T.L.: Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS TECHNOL Transl. Life. Sci. Innov. 25(1), 9–24 (2020) Homayounfar, S.Z., Andrew, T.L.: Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS TECHNOL Transl. Life. Sci. Innov. 25(1), 9–24 (2020)
16.
go back to reference Afsarimanesh, N., et al.: A review on fabrication, characterization and implementation of wearable strain sensors. Sens. Actuators A Phys. 315, 112355 (2020)CrossRef Afsarimanesh, N., et al.: A review on fabrication, characterization and implementation of wearable strain sensors. Sens. Actuators A Phys. 315, 112355 (2020)CrossRef
17.
go back to reference Qiao, Y., et al.: Graphene-based wearable sensors. Nanoscale 11(41), 18923–18945 (2019)CrossRef Qiao, Y., et al.: Graphene-based wearable sensors. Nanoscale 11(41), 18923–18945 (2019)CrossRef
18.
go back to reference Qiu, A., et al.: A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensors. Adv. Func. Mater. 29(17), 1806306 (2019)CrossRef Qiu, A., et al.: A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensors. Adv. Func. Mater. 29(17), 1806306 (2019)CrossRef
19.
go back to reference Cheng, M., et al.: An review of flexible force sensors for human health monitoring. J. Adv. Res. 26, 53–68 (2020)CrossRef Cheng, M., et al.: An review of flexible force sensors for human health monitoring. J. Adv. Res. 26, 53–68 (2020)CrossRef
20.
go back to reference De Meo, E., et al.: Piezoresistive and mechanical behavior of CNT based polyurethane foam. J. Compos. Sci. 4(3), 131 (2020)CrossRef De Meo, E., et al.: Piezoresistive and mechanical behavior of CNT based polyurethane foam. J. Compos. Sci. 4(3), 131 (2020)CrossRef
21.
go back to reference Huang, K., et al.: Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. 192, 108105 (2020)CrossRef Huang, K., et al.: Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. 192, 108105 (2020)CrossRef
22.
go back to reference Cattin, C., Hubert, P.: Piezoresistance in polymer nanocomposites with High aspect ratio particles. ACS Appl. Mater. Interfaces 6, 1804 (2014)CrossRef Cattin, C., Hubert, P.: Piezoresistance in polymer nanocomposites with High aspect ratio particles. ACS Appl. Mater. Interfaces 6, 1804 (2014)CrossRef
23.
go back to reference Hegde, R., Ramji, K., Swapna, P (2018) Simulation of carbon nanotubes polymer based piezoresistive flexible pressure sensor for ultra sensitive electronic skin. In 2018 2nd International conference on electronics, Mater. Eng. Nano-Technol. (IEMENTech). IEEE Hegde, R., Ramji, K., Swapna, P (2018) Simulation of carbon nanotubes polymer based piezoresistive flexible pressure sensor for ultra sensitive electronic skin. In 2018 2nd International conference on electronics, Mater. Eng. Nano-Technol. (IEMENTech). IEEE
24.
go back to reference Amjadi, M., et al.: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Func. Mater. 26(11), 1678–1698 (2016)CrossRef Amjadi, M., et al.: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Func. Mater. 26(11), 1678–1698 (2016)CrossRef
25.
go back to reference Kumar, S., Gupta, T.K., Varadarajan, K.: Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos. B Eng. 177, 107285 (2019)CrossRef Kumar, S., Gupta, T.K., Varadarajan, K.: Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos. B Eng. 177, 107285 (2019)CrossRef
26.
go back to reference Nankali, M., et al.: Electrical properties of stretchable and skin–mountable PDMS/MWCNT hybrid composite films for flexible strain sensors. J. Compos. Mater. 53(21), 3047–3060 (2019)CrossRef Nankali, M., et al.: Electrical properties of stretchable and skin–mountable PDMS/MWCNT hybrid composite films for flexible strain sensors. J. Compos. Mater. 53(21), 3047–3060 (2019)CrossRef
27.
go back to reference Huang, Y.-T., et al.: Design and fabrication of single-walled carbon nanonet flexible strain sensors. Sensors 12(3), 3269–3280 (2012)CrossRef Huang, Y.-T., et al.: Design and fabrication of single-walled carbon nanonet flexible strain sensors. Sensors 12(3), 3269–3280 (2012)CrossRef
28.
go back to reference Choong, C.L., et al.: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451 (2014)CrossRef Choong, C.L., et al.: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451 (2014)CrossRef
29.
go back to reference Liu, Y., et al.: Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials. Fabr. Strateg. Features Sens. 18(2), 645 (2018) Liu, Y., et al.: Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials. Fabr. Strateg. Features Sens. 18(2), 645 (2018)
30.
go back to reference Sreenilayam, S.P., et al.: Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 32, 147–177 (2020)CrossRef Sreenilayam, S.P., et al.: Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 32, 147–177 (2020)CrossRef
31.
go back to reference Chen, W., Yan, X.: Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J. Mater. Sci. Technol. 43, 175–188 (2020)CrossRef Chen, W., Yan, X.: Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J. Mater. Sci. Technol. 43, 175–188 (2020)CrossRef
32.
go back to reference Xu, K., et al.: Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7(31), 9609–9617 (2019)CrossRef Xu, K., et al.: Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 7(31), 9609–9617 (2019)CrossRef
33.
go back to reference Ramírez, J., et al.: Combining high sensitivity and dynamic range: wearable thin-film composite strain sensors of graphene, ultrathin palladium, and PEDOT: PSS. ACS appl. Nano mater. 2(4), 2222–2229 (2019)CrossRef Ramírez, J., et al.: Combining high sensitivity and dynamic range: wearable thin-film composite strain sensors of graphene, ultrathin palladium, and PEDOT: PSS. ACS appl. Nano mater. 2(4), 2222–2229 (2019)CrossRef
34.
go back to reference Sandrimani, V., Balavalad, K.B.: Design and simulation of silicon on insulator based piezoresistive pressure sensor. Int. J. Eng. Sci. 8(8), 18814–18819 (2018) Sandrimani, V., Balavalad, K.B.: Design and simulation of silicon on insulator based piezoresistive pressure sensor. Int. J. Eng. Sci. 8(8), 18814–18819 (2018)
35.
go back to reference Alpuim, P., et al.: Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. J. Non-Cryst. Solids 354(19–25), 2585–2589 (2008)CrossRef Alpuim, P., et al.: Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. J. Non-Cryst. Solids 354(19–25), 2585–2589 (2008)CrossRef
36.
go back to reference Farhath, M., Samad, M.: Design and simulation of a high sensitive stripped-shaped piezoresistive pressure sensor. J. Comput. Electron. 19(1), 310–320 (2020)CrossRef Farhath, M., Samad, M.: Design and simulation of a high sensitive stripped-shaped piezoresistive pressure sensor. J. Comput. Electron. 19(1), 310–320 (2020)CrossRef
37.
go back to reference Christ, J.F., et al.: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 131, 394–401 (2017)CrossRef Christ, J.F., et al.: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 131, 394–401 (2017)CrossRef
38.
go back to reference Al-Rubaiai, M., et al.: A 3D-printed stretchable strain sensor for wind sensing. Smart Mater. Struct. 28(8), 084001 (2019)CrossRef Al-Rubaiai, M., et al.: A 3D-printed stretchable strain sensor for wind sensing. Smart Mater. Struct. 28(8), 084001 (2019)CrossRef
39.
go back to reference Kim, J., Campbell, A.S., Wang, J.: Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018)CrossRef Kim, J., Campbell, A.S., Wang, J.: Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018)CrossRef
40.
go back to reference Ji, B., et al.: Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J. Mater. 6(2), 330–338 (2020) Ji, B., et al.: Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J. Mater. 6(2), 330–338 (2020)
41.
go back to reference Singh, K., et al.: Fabrication of serpentine and I structured graphene-CNT based highly sensitive and flexible strain sensors. Microelectron. Eng. 250, 111631 (2021)CrossRef Singh, K., et al.: Fabrication of serpentine and I structured graphene-CNT based highly sensitive and flexible strain sensors. Microelectron. Eng. 250, 111631 (2021)CrossRef
Metadata
Title
Flexible CNT/silicon piezo-resistive strain sensors geometrical influences on sensitivity for human motion detection
Authors
Syed Muzamil Ahmed
Norhayati Soin
Sharifah Fatmadiana Wan Muhamad Hatta
Yasmin Abdul Wahab
Publication date
07-02-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02135-y