Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Flexible Nanostructured Sulfur–Carbon Nanotube Cathode with High-Rate Performance for Li–S Batteries

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A template-directed synthesis of sulfur-carbon nanotubes and their use to form a membrane that is binder-free, highly-conductive and flexible was reported. This nanostructured membrane is used as a self-supporting cathode without metal current-collectors for Li–S batteries. The membrane cathode has a high electrical conductivity and renders a long life of sulfur over 100 charge/discharge cycles. High discharge capacity of sulfur was attained at 712 mAh g sulfur −1 (23 wt% S) and 520 mAh g sulfur −1 (50 wt% S) at a high current density (6 A g sulfur −1 ). The overall capacity of the flexible cathode correspondingly reaches 163 mAh g−1 (23 wt% S) and 260 mAh g−1 (50 wt% S). These results demonstrate the great potential of this nanostructured flexible membrane as a cathode for Li–S batteries with fast charge/discharge performance and long life.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kwon YH et al (2012) Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater 24(38):5192–5197CrossRef Kwon YH et al (2012) Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater 24(38):5192–5197CrossRef
2.
go back to reference Gwon H et al (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7(2):538–551CrossRef Gwon H et al (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7(2):538–551CrossRef
3.
go back to reference Lee S-Y et al (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ Sci 6:2414–2423CrossRef Lee S-Y et al (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ Sci 6:2414–2423CrossRef
4.
go back to reference Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef
5.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
6.
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRef
7.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef
8.
go back to reference Nishide H, Oyaizu K (2008) Materials science—toward flexible batteries. Science 319(5864):737–738CrossRef Nishide H, Oyaizu K (2008) Materials science—toward flexible batteries. Science 319(5864):737–738CrossRef
9.
go back to reference Xiao Q, Zhang Q, Fan Y, Wang X, Susantyoko RA (2014) Soft silicon anodes for lithium ion batteries. Energy Environ Sci 7(7):2261–2268CrossRef Xiao Q, Zhang Q, Fan Y, Wang X, Susantyoko RA (2014) Soft silicon anodes for lithium ion batteries. Energy Environ Sci 7(7):2261–2268CrossRef
10.
go back to reference Hu LB, Wu H, La Mantia F, Yang YA, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4(10):5843–5848CrossRef Hu LB, Wu H, La Mantia F, Yang YA, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4(10):5843–5848CrossRef
11.
go back to reference Liu S et al (2013) A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25(25):3462–3467CrossRef Liu S et al (2013) A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25(25):3462–3467CrossRef
12.
go back to reference Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater 26(4):625–631CrossRef Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater 26(4):625–631CrossRef
13.
go back to reference Huang J-Q et al (2014) Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium-sulfur batteries. J Mater Chem A 2(28):10869–10875CrossRef Huang J-Q et al (2014) Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium-sulfur batteries. J Mater Chem A 2(28):10869–10875CrossRef
14.
go back to reference Noorden RV (2014) The rechargeable revolution: a better battery. Nature 507:26–28CrossRef Noorden RV (2014) The rechargeable revolution: a better battery. Nature 507:26–28CrossRef
15.
go back to reference Zu CX, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8):2614–2624CrossRef Zu CX, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8):2614–2624CrossRef
16.
go back to reference Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef
17.
go back to reference Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef
18.
go back to reference Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef
19.
go back to reference Wang D-W et al (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef Wang D-W et al (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef
20.
go back to reference Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef
21.
go back to reference Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787CrossRef Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787CrossRef
22.
go back to reference Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef
23.
go back to reference Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef
24.
go back to reference Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23(47):5641–5644CrossRef Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23(47):5641–5644CrossRef
25.
go back to reference Hagen M et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268CrossRef Hagen M et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268CrossRef
26.
go back to reference Thieme S et al (2013) High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J Mater Chem A 1(32):9225–9234CrossRef Thieme S et al (2013) High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J Mater Chem A 1(32):9225–9234CrossRef
27.
go back to reference Yuan LX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284CrossRef Yuan LX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284CrossRef
28.
go back to reference Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126–L129CrossRef Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126–L129CrossRef
29.
go back to reference Kyotani T, Tsai LF, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8(8):2109–2113CrossRef Kyotani T, Tsai LF, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8(8):2109–2113CrossRef
30.
go back to reference Cameron JH, Grace TM (1983) Kinetic-study of sulfate reduction with carbon. Ind Eng Chem Fund 22(4):486–494CrossRef Cameron JH, Grace TM (1983) Kinetic-study of sulfate reduction with carbon. Ind Eng Chem Fund 22(4):486–494CrossRef
31.
go back to reference Kurmaev EZ, Galakhov AV, Moewes A, Moehlecke S, Kopelevich Y (2002) Interlayer conduction band states in graphite-sulfur composites. Phys Rev B 66(19) Kurmaev EZ, Galakhov AV, Moewes A, Moehlecke S, Kopelevich Y (2002) Interlayer conduction band states in graphite-sulfur composites. Phys Rev B 66(19)
32.
go back to reference Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11(10):4288–4294CrossRef Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11(10):4288–4294CrossRef
33.
go back to reference Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef
35.
go back to reference Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef
36.
go back to reference Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325–331CrossRef Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325–331CrossRef
37.
go back to reference Schuster J et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed 51(15):3591–3595CrossRef Schuster J et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed 51(15):3591–3595CrossRef
38.
go back to reference Wu ZS et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef Wu ZS et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef
39.
go back to reference Liu NA, Hu LB, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5(8):6487–6493CrossRef Liu NA, Hu LB, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5(8):6487–6493CrossRef
Metadata
Title
Flexible Nanostructured Sulfur–Carbon Nanotube Cathode with High-Rate Performance for Li–S Batteries
Author
Guangmin Zhou
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3406-0_3