Skip to main content
Top
Published in: Journal of Coatings Technology and Research 1/2023

28-11-2022 | Review Article

Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review

Authors: Anum Rashid, Usman Zubair, Munir Ashraf, Amjed Javid, Hafiz Affan Abid, Saba Akram

Published in: Journal of Coatings Technology and Research | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The digitization of a society has tremendously influenced the social, economic, and organizational activities of human beings. Internet of things (IoT) will be the next norm to ensure well-being, protection, and comfort of the human beings. Owing to the crisis in energy and consumption of fuel, the research in energy harvesters and autonomous sensors has been focused to develop self-powered wearable devices. The stand-alone energy devices are not suitable to fulfill the requirement of supplying power to the various wearable devices because of higher weight, large volume, frequent recharging, and replacement. The integration of wearable devices into textile materials has recently fostered the emergence of textile-based piezoelectric energy harvesters and sensors. A critical review has been presented on the current status of the textile-based piezosensors and energy harvesters, covering fundamental aspects like probable piezocoatings, fabrication strategies, material choices, working principles, theory behind piezoelectric energy harvesting devices and possible potential applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)CrossRef Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)CrossRef
2.
go back to reference Weng, W, Chen, P, He, S, Sun, X, Peng, H, “Smart Electronic Textiles.” Angew. Chem. Int. Edit., 55 (21) 6140–6169 (2016)CrossRef Weng, W, Chen, P, He, S, Sun, X, Peng, H, “Smart Electronic Textiles.” Angew. Chem. Int. Edit., 55 (21) 6140–6169 (2016)CrossRef
3.
go back to reference DeVos, M, Torah, R, Glanc-Gostkiewicz, M, Tudor, J, “A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric.” J. Display Technol., 12 (12) 1757–1763 (2016)CrossRef DeVos, M, Torah, R, Glanc-Gostkiewicz, M, Tudor, J, “A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric.” J. Display Technol., 12 (12) 1757–1763 (2016)CrossRef
4.
go back to reference Castano, LM, Flatau, AB, “Smart Fabric Sensors and e-Textile Technol.ogies: A Review.” Smart Mater. Struct., 23 (5) 053001 (2014)CrossRef Castano, LM, Flatau, AB, “Smart Fabric Sensors and e-Textile Technol.ogies: A Review.” Smart Mater. Struct., 23 (5) 053001 (2014)CrossRef
5.
go back to reference Zięba, J, Frydrysiak, M, “Textronics-Electrical and Electronic Textiles Sensors for Breathing Frequency Measurement.” Fibres Text. East. Eur., 14 (5) 59 (2006) Zięba, J, Frydrysiak, M, “Textronics-Electrical and Electronic Textiles Sensors for Breathing Frequency Measurement.” Fibres Text. East. Eur., 14 (5) 59 (2006)
6.
go back to reference Zeng, W, Tao, X-M, Chen, S, Shang, S, Chan, HLW, Choy, SH, “Highly Durable All-Fiber Nanogenerator for Mechanical Energy Harvesting.” Energy Environ. Sci., 6 (9) 2631–2638 (2013)CrossRef Zeng, W, Tao, X-M, Chen, S, Shang, S, Chan, HLW, Choy, SH, “Highly Durable All-Fiber Nanogenerator for Mechanical Energy Harvesting.” Energy Environ. Sci., 6 (9) 2631–2638 (2013)CrossRef
7.
go back to reference Kaushik, V, Lee, J, Hong, J, Lee, S, Lee, S, Seo, J, Mahata, C, Lee, TJN, “Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.” Nanomaterials, 5 (3) 1493–1531 (2015)CrossRef Kaushik, V, Lee, J, Hong, J, Lee, S, Lee, S, Seo, J, Mahata, C, Lee, TJN, “Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.” Nanomaterials, 5 (3) 1493–1531 (2015)CrossRef
8.
go back to reference Brun, J, Vicard, D, Mourey, B, Lepine, B, Frassati, F, “Packaging and Wired Interconnections for Insertion of Miniaturized Chips in Smart Fabrics.” Proc. 2009 European Microelectronics and Packaging Conference, 2009 Brun, J, Vicard, D, Mourey, B, Lepine, B, Frassati, F, “Packaging and Wired Interconnections for Insertion of Miniaturized Chips in Smart Fabrics.” Proc. 2009 European Microelectronics and Packaging Conference, 2009
9.
go back to reference Choi, S, Kwon, S, Kim, H, Kim, W, Kwon, JH, Lim, MS, Lee, HS, Choi, KC, “Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.” Sci. Rep., 7 (1) 1–8 (2017) Choi, S, Kwon, S, Kim, H, Kim, W, Kwon, JH, Lim, MS, Lee, HS, Choi, KC, “Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.” Sci. Rep., 7 (1) 1–8 (2017)
10.
go back to reference Dubal, DP, Chodankar, NR, Kim, D-H, Gomez-Romero, P, “Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics.” Chem. Soc. Rev., 47 (6) 2065–2129 (2018)CrossRef Dubal, DP, Chodankar, NR, Kim, D-H, Gomez-Romero, P, “Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics.” Chem. Soc. Rev., 47 (6) 2065–2129 (2018)CrossRef
11.
go back to reference Ortiz, RP, Facchetti, A, Marks, T, “High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors.” Chem. Rev., 110 (1) 205–239 (2010)CrossRef Ortiz, RP, Facchetti, A, Marks, T, “High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors.” Chem. Rev., 110 (1) 205–239 (2010)CrossRef
12.
go back to reference Krucińska, I, Cybula, M, Rambausek, L, VanLangenhove, L, “Piezoelectric Textiles: State of the Art.” Mater. Technol., 25 (2) 93–100 (2010)CrossRef Krucińska, I, Cybula, M, Rambausek, L, VanLangenhove, L, “Piezoelectric Textiles: State of the Art.” Mater. Technol., 25 (2) 93–100 (2010)CrossRef
13.
go back to reference Wang, ZL, Zhu, G, Yang, Y, Wang, S, Pan, C, “Progress in Nanogenerators for Portable Electronics.” Mater. Today, 15 (12) 532–543 (2012)CrossRef Wang, ZL, Zhu, G, Yang, Y, Wang, S, Pan, C, “Progress in Nanogenerators for Portable Electronics.” Mater. Today, 15 (12) 532–543 (2012)CrossRef
14.
go back to reference Uchino, K, "The Development of Piezoelectric Materials and the New Perspective." In: Advanced Piezoelectric Materials, pp. 1–92. Elsevier (2017) Uchino, K, "The Development of Piezoelectric Materials and the New Perspective." In: Advanced Piezoelectric Materials, pp. 1–92. Elsevier (2017)
15.
go back to reference Manbachi, A, Cobbold, RS, “Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection.” Ultrasound, 19 (4) 187–196 (2011)CrossRef Manbachi, A, Cobbold, RS, “Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection.” Ultrasound, 19 (4) 187–196 (2011)CrossRef
16.
go back to reference Qiu, J, Ji, H, “Research on Applications of Piezoelectric Materials in Smart Structures.” Front. Mech. Eng., 6 (1) 99–117 (2011) Qiu, J, Ji, H, “Research on Applications of Piezoelectric Materials in Smart Structures.” Front. Mech. Eng., 6 (1) 99–117 (2011)
17.
go back to reference Mason, WP, “Piezoelectricity, Its History and Applications.” J. Acoust. Soc. Am., 70 (6) 1561–1566 (1981)CrossRef Mason, WP, “Piezoelectricity, Its History and Applications.” J. Acoust. Soc. Am., 70 (6) 1561–1566 (1981)CrossRef
18.
go back to reference Matsouka, D, Vassiliadis, S, "Piezoelectric Melt-Spun Textile Fibers: Technol.ogical Overview." 65 (2018) Matsouka, D, Vassiliadis, S, "Piezoelectric Melt-Spun Textile Fibers: Technol.ogical Overview." 65 (2018)
19.
go back to reference Jiang, X, Kim, J, Kim, K, “Relaxor-PT Single Crystal Piezoelectric Sensors.” Crystals, 4 (3) 351–376 (2014)CrossRef Jiang, X, Kim, J, Kim, K, “Relaxor-PT Single Crystal Piezoelectric Sensors.” Crystals, 4 (3) 351–376 (2014)CrossRef
20.
go back to reference Katzir, S, "The Discovery of the Piezoelectric Effect." In: The Beginnings of Piezoelectricity, pp. 15–64. Springer (2006) Katzir, S, "The Discovery of the Piezoelectric Effect." In: The Beginnings of Piezoelectricity, pp. 15–64. Springer (2006)
21.
go back to reference Bell, AJ, Deubzer, O, “Lead-Free Piezoelectrics—The Environmental and Regulatory Issues.” MRS Bull., 43 (8) 581–587 (2018)CrossRef Bell, AJ, Deubzer, O, “Lead-Free Piezoelectrics—The Environmental and Regulatory Issues.” MRS Bull., 43 (8) 581–587 (2018)CrossRef
22.
go back to reference Thomann, HJAM, “Piezoelectric Ceramics.” Adv. Mater., 2 (10) 458–463 (1990)CrossRef Thomann, HJAM, “Piezoelectric Ceramics.” Adv. Mater., 2 (10) 458–463 (1990)CrossRef
23.
go back to reference Mishra, S, Unnikrishnan, L, Nayak, SK, Mohanty, S, “Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review.” Macro Molecular Mater. Eng., 304 (1) 1800463 (2019)CrossRef Mishra, S, Unnikrishnan, L, Nayak, SK, Mohanty, S, “Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review.” Macro Molecular Mater. Eng., 304 (1) 1800463 (2019)CrossRef
24.
go back to reference VandenEnde, D, Bory, B, Groen, W, VanderZwaag, S, “Improving the d 33 and g 33 properties of 0–3 piezoelectric composites by dielectrophoresis.” J. Appl. Phys., 107 (2) 024107 (2010)CrossRef VandenEnde, D, Bory, B, Groen, W, VanderZwaag, S, “Improving the d 33 and g 33 properties of 0–3 piezoelectric composites by dielectrophoresis.” J. Appl. Phys., 107 (2) 024107 (2010)CrossRef
25.
go back to reference Duan, Y, You, G, Sun, K, Zhu, Z, Liao, X, Lv, L, Tang, H, Xu, B, He, L, “Advances in Wearable Textile-Based Micro Energy Storage Devices: Structuring, Application and Perspective.” Nanoscale Adv., 3 (22) 6271–6293 (2021)CrossRef Duan, Y, You, G, Sun, K, Zhu, Z, Liao, X, Lv, L, Tang, H, Xu, B, He, L, “Advances in Wearable Textile-Based Micro Energy Storage Devices: Structuring, Application and Perspective.” Nanoscale Adv., 3 (22) 6271–6293 (2021)CrossRef
26.
go back to reference Hu, J, Meng, H, Li, G, Ibekwe, S, “A Review Of Stimuli-Responsive Polymers for Smart Textile Applications.” Smart Mater. Struct., 21 (5) 053001 (2012)CrossRef Hu, J, Meng, H, Li, G, Ibekwe, S, “A Review Of Stimuli-Responsive Polymers for Smart Textile Applications.” Smart Mater. Struct., 21 (5) 053001 (2012)CrossRef
27.
go back to reference Lee, J, Kwon, H, Seo, J, Shin, S, Koo, JH, Pang, C, Son, S, Kim, JH, Jang, YH, Kim, DE, Lee, T, “Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics.” Adv. Mater., 27 2433–2439 (2015)CrossRef Lee, J, Kwon, H, Seo, J, Shin, S, Koo, JH, Pang, C, Son, S, Kim, JH, Jang, YH, Kim, DE, Lee, T, “Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics.” Adv. Mater., 27 2433–2439 (2015)CrossRef
28.
go back to reference Khan, RA., Ashraf, M, Javid, A, Iqbal, K, Rasheed, A, Nasir, N,” Development of Self-polarized PVDF Films on Carbon Fabrics for Sensing Applications.” pp. 1–7 (2021) Khan, RA., Ashraf, M, Javid, A, Iqbal, K, Rasheed, A, Nasir, N,” Development of Self-polarized PVDF Films on Carbon Fabrics for Sensing Applications.” pp. 1–7 (2021)
29.
go back to reference Bu, T, Xiao, T, Yang, Z, Liu, G, Fu, X, Nie, J, Guo, T, Pang, Y, Zhao, J, Xi, F, “Stretchable Triboelectric–Photonic Smart Skin for Tactile and Gesture Sensing.” Adv. Mater., 30 (16) 1800066 (2018)CrossRef Bu, T, Xiao, T, Yang, Z, Liu, G, Fu, X, Nie, J, Guo, T, Pang, Y, Zhao, J, Xi, F, “Stretchable Triboelectric–Photonic Smart Skin for Tactile and Gesture Sensing.” Adv. Mater., 30 (16) 1800066 (2018)CrossRef
30.
go back to reference Pu, X, Li, L, Liu, M, Jiang, C, Du, C, Zhao, Z, Hu, W, Wang, ZL, “Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.” Adv. Mater., 28 (1) 98–105 (2016)CrossRef Pu, X, Li, L, Liu, M, Jiang, C, Du, C, Zhao, Z, Hu, W, Wang, ZL, “Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.” Adv. Mater., 28 (1) 98–105 (2016)CrossRef
31.
go back to reference Liu, M, Pu, X, Jiang, C, Liu, T, Huang, X, Chen, L, Du, C, Sun, J, Hu, W, Wang, ZL, “Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.” Adv. Mater., 29 (41) 1703700 (2017)CrossRef Liu, M, Pu, X, Jiang, C, Liu, T, Huang, X, Chen, L, Du, C, Sun, J, Hu, W, Wang, ZL, “Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.” Adv. Mater., 29 (41) 1703700 (2017)CrossRef
32.
go back to reference He, T, Shi, Q, Wang, H, Wen, F, Chen, T, Ouyang, J, Lee, CJ, “Beyond Energy Harvesting-Multi-functional Triboelectric Nanosensors on a Textile.” Nano Energy, 57 338–352 (2019)CrossRef He, T, Shi, Q, Wang, H, Wen, F, Chen, T, Ouyang, J, Lee, CJ, “Beyond Energy Harvesting-Multi-functional Triboelectric Nanosensors on a Textile.” Nano Energy, 57 338–352 (2019)CrossRef
33.
go back to reference Zhou, Z, Chen, N, Zhong, H, Zhang, W, Zhang, Y, Yin, X, He, B, “Textile-Based Mechanical Sensors: A Review.” Materials (Basel)., 14 (20) 6073 (2021)CrossRef Zhou, Z, Chen, N, Zhong, H, Zhang, W, Zhang, Y, Yin, X, He, B, “Textile-Based Mechanical Sensors: A Review.” Materials (Basel)., 14 (20) 6073 (2021)CrossRef
34.
go back to reference Cheng, M, Zhu, G, Zhang, F, Tang, W, Jianping, S, Yang, J, Zhu, L, “A Review of Flexible Force Sensors for Human Health Monitoring.” J. Adv. Res., 26 53–68 (2020)CrossRef Cheng, M, Zhu, G, Zhang, F, Tang, W, Jianping, S, Yang, J, Zhu, L, “A Review of Flexible Force Sensors for Human Health Monitoring.” J. Adv. Res., 26 53–68 (2020)CrossRef
35.
go back to reference Lou, Z, Wang, L, Jiang, K, Wei, Z, Shen, G, Reports, ER, “Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration.” Mater. Sci. Eng. R Rep., 140 100523 (2020)CrossRef Lou, Z, Wang, L, Jiang, K, Wei, Z, Shen, G, Reports, ER, “Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration.” Mater. Sci. Eng. R Rep., 140 100523 (2020)CrossRef
36.
go back to reference Chen, H, Bao, S, Lu, C, Wang, L, Ma, J, Wang, P, Lu, H, Shu, F, Oetomo, SB, Chen, W, “Design of an Integrated Wearable Multi-Sensor Platform Based on Flexible Materials for Neonatal Monitoring.” IEEE Access, 8 23732–23747 (2020)CrossRef Chen, H, Bao, S, Lu, C, Wang, L, Ma, J, Wang, P, Lu, H, Shu, F, Oetomo, SB, Chen, W, “Design of an Integrated Wearable Multi-Sensor Platform Based on Flexible Materials for Neonatal Monitoring.” IEEE Access, 8 23732–23747 (2020)CrossRef
37.
go back to reference Lim, HR, Kim, HS, Qazi, R, Kwon, YT, Jeong, JW, Yeo, WH, “Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics In Healthcare, Energy, and Environment.” Adv. Mater., 32 (15) 1901924 (2020)CrossRef Lim, HR, Kim, HS, Qazi, R, Kwon, YT, Jeong, JW, Yeo, WH, “Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics In Healthcare, Energy, and Environment.” Adv. Mater., 32 (15) 1901924 (2020)CrossRef
38.
go back to reference Heo, JS, Hossain, MF, Kim, I, “Challenges in Design and Fabrication of Flexible/Stretchable Carbon-and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review.” Sensors, 20 (14) 3927 (2020)CrossRef Heo, JS, Hossain, MF, Kim, I, “Challenges in Design and Fabrication of Flexible/Stretchable Carbon-and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review.” Sensors, 20 (14) 3927 (2020)CrossRef
39.
go back to reference Islam, G, Ali, A, Collie, S, “Textile Sensors for Wearable Applications: A Comprehensive Review.” Cellulose, 27 (11) 6103–6131 (2020)CrossRef Islam, G, Ali, A, Collie, S, “Textile Sensors for Wearable Applications: A Comprehensive Review.” Cellulose, 27 (11) 6103–6131 (2020)CrossRef
40.
go back to reference Cera, L, Gonzalez, GM, Liu, Q, Choi, S, Chantre, CO, Lee, J, Gabardi, R, Choi, MC, Shin, K, Parker, KK, “A Bioinspired and Hierarchically Structured Shape-Memory Material.” Nat. Mater., 20 (2) 242–249 (2021)CrossRef Cera, L, Gonzalez, GM, Liu, Q, Choi, S, Chantre, CO, Lee, J, Gabardi, R, Choi, MC, Shin, K, Parker, KK, “A Bioinspired and Hierarchically Structured Shape-Memory Material.” Nat. Mater., 20 (2) 242–249 (2021)CrossRef
41.
go back to reference Lin, Z, Zeng, Z, Gui, X, Tang, Z, Zou, M, Cao, A, “Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications.” Adv. Energy Mater., 6 (17) 1600554 (2016)CrossRef Lin, Z, Zeng, Z, Gui, X, Tang, Z, Zou, M, Cao, A, “Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications.” Adv. Energy Mater., 6 (17) 1600554 (2016)CrossRef
42.
go back to reference Hua, M, Wu, S, Ma, Y, Zhao, Y, Chen, Z, Frenkel, I, Strzalka, J, Zhou, H, Zhu, X, He, XJN, “Strong Tough Hydrogels via the Synergy of Freeze-Casting and Salting Out.” Nature, 590 (7847) 594–599 (2021)CrossRef Hua, M, Wu, S, Ma, Y, Zhao, Y, Chen, Z, Frenkel, I, Strzalka, J, Zhou, H, Zhu, X, He, XJN, “Strong Tough Hydrogels via the Synergy of Freeze-Casting and Salting Out.” Nature, 590 (7847) 594–599 (2021)CrossRef
43.
go back to reference Shi, S, Li, Y, Ngo-Dinh, B-N, Markmann, J, Weissmüller, J, “Scaling Behavior of Stiffness and Strength Of Hierarchical Network Nanomaterials.” Science, 371 (6533) 1026–1033 (2021)CrossRef Shi, S, Li, Y, Ngo-Dinh, B-N, Markmann, J, Weissmüller, J, “Scaling Behavior of Stiffness and Strength Of Hierarchical Network Nanomaterials.” Science, 371 (6533) 1026–1033 (2021)CrossRef
44.
go back to reference Jin, S, Wang, Y, Motlag, M, Gao, S, Xu, J, Nian, Q, Wu, W, Cheng, GJ, “Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.” Adv. Mater., 30 (11) 1705840 (2018)CrossRef Jin, S, Wang, Y, Motlag, M, Gao, S, Xu, J, Nian, Q, Wu, W, Cheng, GJ, “Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.” Adv. Mater., 30 (11) 1705840 (2018)CrossRef
45.
go back to reference Yang, Y, Hu, H, “Spacer Fabric-Based Exuding Wound Dressing–Part I: Structural Design, Fabrication and Property Evaluation of Spacer Fabrics.” Textile Res. J., 87 (12) 1469–1480 (2017)CrossRef Yang, Y, Hu, H, “Spacer Fabric-Based Exuding Wound Dressing–Part I: Structural Design, Fabrication and Property Evaluation of Spacer Fabrics.” Textile Res. J., 87 (12) 1469–1480 (2017)CrossRef
46.
go back to reference Crina, B, Blaga, M, Luminita, V, Mishra, R, “Comfort Properties of Functional Weft Knitted Spacer Fabrics.” Tekstil ve Konfeksiyon, 23 (3) 220–227 (2013) Crina, B, Blaga, M, Luminita, V, Mishra, R, “Comfort Properties of Functional Weft Knitted Spacer Fabrics.” Tekstil ve Konfeksiyon, 23 (3) 220–227 (2013)
47.
go back to reference Soin, N, Shah, TH, Anand, SC, Geng, J, Pornwannachai, W, Mandal, P, Reid, D, Sharma, S, Hadimani, RL, Bayramol, DV, “Novel ‘3-D Spacer’ All Fibre Piezoelectric Textiles for Energy Harvesting Applications.” Energy Environ. Sci., 7 (5) 1670–1679 (2014)CrossRef Soin, N, Shah, TH, Anand, SC, Geng, J, Pornwannachai, W, Mandal, P, Reid, D, Sharma, S, Hadimani, RL, Bayramol, DV, “Novel ‘3-D Spacer’ All Fibre Piezoelectric Textiles for Energy Harvesting Applications.” Energy Environ. Sci., 7 (5) 1670–1679 (2014)CrossRef
48.
go back to reference Vatansever Bayramol, D, Soin, N, Dubey, A, Upadhyay, RK, Priyadarshini, R, Roy, SS, Shah, TH, Anand, SC, “Evaluating the Fabric Performance and Antibacterial Properties of 3-D Piezoelectric Spacer Fabric.” J. Textile Inst., 109 (12) 1613–1619 (2018)CrossRef Vatansever Bayramol, D, Soin, N, Dubey, A, Upadhyay, RK, Priyadarshini, R, Roy, SS, Shah, TH, Anand, SC, “Evaluating the Fabric Performance and Antibacterial Properties of 3-D Piezoelectric Spacer Fabric.” J. Textile Inst., 109 (12) 1613–1619 (2018)CrossRef
49.
go back to reference Hong, Y, Wang, B, Long, Z, Zhang, Z, Pan, Q, Liu, S, Luo, X, Yang, Z, “Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability.” Adv. Funct. Mater., 31 (42) 2104737 (2021)CrossRef Hong, Y, Wang, B, Long, Z, Zhang, Z, Pan, Q, Liu, S, Luo, X, Yang, Z, “Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability.” Adv. Funct. Mater., 31 (42) 2104737 (2021)CrossRef
50.
go back to reference Wicaksono, I, Tucker, CI, Sun, T, Guerrero, CA, Liu, C, Woo, WM, Pence, EJ, Dagdeviren, C, “A Tailored, Electronic Textile Conformable Suit for Large-Scale Spatiotemporal Physiological Sensing In Vivo.” NPJ. Flex. Electron., 4 (1) 1–13 (2020)CrossRef Wicaksono, I, Tucker, CI, Sun, T, Guerrero, CA, Liu, C, Woo, WM, Pence, EJ, Dagdeviren, C, “A Tailored, Electronic Textile Conformable Suit for Large-Scale Spatiotemporal Physiological Sensing In Vivo.” NPJ. Flex. Electron., 4 (1) 1–13 (2020)CrossRef
51.
go back to reference Tan, Y, Yang, K, Wang, B, Li, H, Wang, L, Wang, C, “High-Performance Textile Piezoelectric Pressure Sensor with Novel Structural Hierarchy Based on ZnO Nanorods Array for Wearable Application.” Nano Res., 14 (11) 3969–3976 (2021)CrossRef Tan, Y, Yang, K, Wang, B, Li, H, Wang, L, Wang, C, “High-Performance Textile Piezoelectric Pressure Sensor with Novel Structural Hierarchy Based on ZnO Nanorods Array for Wearable Application.” Nano Res., 14 (11) 3969–3976 (2021)CrossRef
52.
go back to reference Sodiq, A, Baloch, AA, Khan, SA, Sezer, N, Mahmoud, S, Jama, M, Abdelaal, A, “Towards Modern Sustainable Cities: Review of Sustainability Principles and Trends.” J. Clean Prod., 227 972–1001 (2019)CrossRef Sodiq, A, Baloch, AA, Khan, SA, Sezer, N, Mahmoud, S, Jama, M, Abdelaal, A, “Towards Modern Sustainable Cities: Review of Sustainability Principles and Trends.” J. Clean Prod., 227 972–1001 (2019)CrossRef
53.
go back to reference Shi, Q, Zhang, Z, Yang, Y, Shan, X, Salam, B, Lee, C, “Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications.” ACS Nano, 15 (11) 18312–18326 (2021)CrossRef Shi, Q, Zhang, Z, Yang, Y, Shan, X, Salam, B, Lee, C, “Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications.” ACS Nano, 15 (11) 18312–18326 (2021)CrossRef
54.
go back to reference Sezer, N, Koç, M, “A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting.” Nano Energy, 80 105567 (2021)CrossRef Sezer, N, Koç, M, “A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting.” Nano Energy, 80 105567 (2021)CrossRef
55.
go back to reference Deng, W, Sun, Y, Yao, X, Subramanian, K, Ling, C, Wang, H, Chopra, SS, Xu, BB, Wang, JX, Chen, JF, “Masks for COVID-19.” Adv. Sci., 9 (3) 2102189 (2022)CrossRef Deng, W, Sun, Y, Yao, X, Subramanian, K, Ling, C, Wang, H, Chopra, SS, Xu, BB, Wang, JX, Chen, JF, “Masks for COVID-19.” Adv. Sci., 9 (3) 2102189 (2022)CrossRef
56.
go back to reference Wang, Y, Zhao, X, Liu, Y, Zhou, W, “The Effect of Metal Surface Nanomorphology on the Output Performance of a TENG.” Beilstein J. Nanotechnol., 13 (1) 298–312 (2022)CrossRef Wang, Y, Zhao, X, Liu, Y, Zhou, W, “The Effect of Metal Surface Nanomorphology on the Output Performance of a TENG.” Beilstein J. Nanotechnol., 13 (1) 298–312 (2022)CrossRef
57.
go back to reference Dong, K, Hu, Y, Yang, J, Kim, S-W, Hu, W, Wang, ZL, “Smart Textile Triboelectric Nanogenerators: Current Status and Perspectives.” MRS Bull., 46 (6) 512–521 (2021)CrossRef Dong, K, Hu, Y, Yang, J, Kim, S-W, Hu, W, Wang, ZL, “Smart Textile Triboelectric Nanogenerators: Current Status and Perspectives.” MRS Bull., 46 (6) 512–521 (2021)CrossRef
58.
go back to reference Zhang, X, Ai, J, Yue, Y, Shi, Y, Zou, R, Su, B, “Anti-Stress Ball Energy Harvester.” Nano Energy, 90 106493 (2021)CrossRef Zhang, X, Ai, J, Yue, Y, Shi, Y, Zou, R, Su, B, “Anti-Stress Ball Energy Harvester.” Nano Energy, 90 106493 (2021)CrossRef
59.
go back to reference Shen, F, Li, Z, Guo, H, Yang, Z, Wu, H, Wang, M, Luo, J, Xie, S, Peng, Y, Pu, H, “Recent Advances Towards Ocean Energy Harvesting and Self-powered Applications Based on Triboelectric Nanogenerators.” Adv Electron. Mater., 7 (9) 2100277 (2021)CrossRef Shen, F, Li, Z, Guo, H, Yang, Z, Wu, H, Wang, M, Luo, J, Xie, S, Peng, Y, Pu, H, “Recent Advances Towards Ocean Energy Harvesting and Self-powered Applications Based on Triboelectric Nanogenerators.” Adv Electron. Mater., 7 (9) 2100277 (2021)CrossRef
60.
go back to reference Zhang, Q, Mu, J, Mu, J, Yang, X, Zhang, S, Han, X, Zhao, Y, You, Y, Yu, J, Chou, X, “A Design of Flexible Triboelectric Generator Integrated with High-Efficiency Energy Storage Unit.” Energy Technol., 9 (2) 2000962 (2021)CrossRef Zhang, Q, Mu, J, Mu, J, Yang, X, Zhang, S, Han, X, Zhao, Y, You, Y, Yu, J, Chou, X, “A Design of Flexible Triboelectric Generator Integrated with High-Efficiency Energy Storage Unit.” Energy Technol., 9 (2) 2000962 (2021)CrossRef
61.
go back to reference Cong, Z, Guo, W, Guo, Z, Chen, Y, Liu, M, Hou, T, Pu, X, Hu, W, Wang, ZL, “Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors.” ACS Nano, 14 (5) 5590–5599 (2020)CrossRef Cong, Z, Guo, W, Guo, Z, Chen, Y, Liu, M, Hou, T, Pu, X, Hu, W, Wang, ZL, “Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors.” ACS Nano, 14 (5) 5590–5599 (2020)CrossRef
62.
go back to reference Guo, H, Jiang, Z, Ren, D, Li, S, Wang, J, Cai, X, Zhang, D, Guo, Q, Xiao, J, Yang, J, “High-Performance Flexible Micro-Supercapacitors Printed on Textiles for Powering Wearable Electronics.” ChemElectroChem, 8 (9) 1574–1579 (2021)CrossRef Guo, H, Jiang, Z, Ren, D, Li, S, Wang, J, Cai, X, Zhang, D, Guo, Q, Xiao, J, Yang, J, “High-Performance Flexible Micro-Supercapacitors Printed on Textiles for Powering Wearable Electronics.” ChemElectroChem, 8 (9) 1574–1579 (2021)CrossRef
63.
go back to reference Covaci, C, Gontean, A, “Piezoelectric Energy Harvesting Solutions: A Review.” Sensors, 20 (12) 3512 (2020)CrossRef Covaci, C, Gontean, A, “Piezoelectric Energy Harvesting Solutions: A Review.” Sensors, 20 (12) 3512 (2020)CrossRef
64.
go back to reference Karafi, MR, Khorasani, F, “Evaluation of Mechanical and Electric Power Losses in a Typical Piezoelectric Ultrasonic Transducer.” Sens. Actuators A Phys., 288 156–164 (2019)CrossRef Karafi, MR, Khorasani, F, “Evaluation of Mechanical and Electric Power Losses in a Typical Piezoelectric Ultrasonic Transducer.” Sens. Actuators A Phys., 288 156–164 (2019)CrossRef
65.
go back to reference Chen, X, Shao, J, Tian, H, Li, X, Wang, C, Luo, Y, Li, S, “Luo, Y and Li, Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity-Enhanced Micropillars for Dynamic Tactile Sensing.” Adv. Mater. Technol., 5 (7) 2000046 (2020)CrossRef Chen, X, Shao, J, Tian, H, Li, X, Wang, C, Luo, Y, Li, S, “Luo, Y and Li, Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity-Enhanced Micropillars for Dynamic Tactile Sensing.” Adv. Mater. Technol., 5 (7) 2000046 (2020)CrossRef
66.
go back to reference Fuh, Y-K, Ho, H-C, Wang, B-S, Li, S-C, “All-Fiber Transparent Piezoelectric Harvester with a Cooperatively Enhanced Structure.” Nanotechnology, 27 (43) 435403 (2016)CrossRef Fuh, Y-K, Ho, H-C, Wang, B-S, Li, S-C, “All-Fiber Transparent Piezoelectric Harvester with a Cooperatively Enhanced Structure.” Nanotechnology, 27 (43) 435403 (2016)CrossRef
67.
go back to reference Xu, M, Kang, H, Guan, L, Li, H, Zhang, M, “Facile Fabrication of a Flexible Linbo3 Piezoelectric Sensor Through Hot Pressing for Biomechanical Monitoring.” ACS Appl. Mater. Interfaces, 9 (40) 34687–34695 (2017)CrossRef Xu, M, Kang, H, Guan, L, Li, H, Zhang, M, “Facile Fabrication of a Flexible Linbo3 Piezoelectric Sensor Through Hot Pressing for Biomechanical Monitoring.” ACS Appl. Mater. Interfaces, 9 (40) 34687–34695 (2017)CrossRef
68.
go back to reference Jung, JH, Lee, M, Hong, J-I, Ding, Y, Chen, C-Y, Chou, L-J, Wang, ZL, “Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator.” ACS Nano, 5 (12) 10041–10046 (2011)CrossRef Jung, JH, Lee, M, Hong, J-I, Ding, Y, Chen, C-Y, Chou, L-J, Wang, ZL, “Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator.” ACS Nano, 5 (12) 10041–10046 (2011)CrossRef
69.
go back to reference Hwang, GT, Annapureddy, V, Han, JH, Joe, DJ, Baek, C, Park, DY, Kim, DH, Park, JH, Jeong, CK, Park, KI, “Self-Powered Wireless Sensor Node Enabled by An Aerosol-Deposited PZT Flexible Energy Harvester.” Adv. Energy Mater., 6 (13) 1600237 (2016)CrossRef Hwang, GT, Annapureddy, V, Han, JH, Joe, DJ, Baek, C, Park, DY, Kim, DH, Park, JH, Jeong, CK, Park, KI, “Self-Powered Wireless Sensor Node Enabled by An Aerosol-Deposited PZT Flexible Energy Harvester.” Adv. Energy Mater., 6 (13) 1600237 (2016)CrossRef
70.
go back to reference Hu, D, Yao, M, Fan, Y, Ma, C, Fan, M, Liu, M, “Strategies to Achieve High Performance Piezoelectric Nanogenerators.” Nano Energy, 55 288–304 (2019)CrossRef Hu, D, Yao, M, Fan, Y, Ma, C, Fan, M, Liu, M, “Strategies to Achieve High Performance Piezoelectric Nanogenerators.” Nano Energy, 55 288–304 (2019)CrossRef
71.
go back to reference Pandey, R, Khandelwal, G, Palani, IA, Singh, V, Kim, S-J, “A La-doped ZnO Ultra-Flexible Flutter-Piezoelectric Nanogenerator for Energy Harvesting and Sensing Applications: A Novel Renewable Source Of Energy.” Nanoscale, 11 (29) 14032–14041 (2019)CrossRef Pandey, R, Khandelwal, G, Palani, IA, Singh, V, Kim, S-J, “A La-doped ZnO Ultra-Flexible Flutter-Piezoelectric Nanogenerator for Energy Harvesting and Sensing Applications: A Novel Renewable Source Of Energy.” Nanoscale, 11 (29) 14032–14041 (2019)CrossRef
72.
go back to reference Jin, C, Hao, N, Xu, Z, Trase, I, Nie, Y, Dong, L, Closson, A, Chen, Z, Zhang, X, “Flexible Piezoelectric Nanogenerators Using Metal-doped ZnO-PVDF Films.” Sens. Actuators A Phys., 305 111912 (2020)CrossRef Jin, C, Hao, N, Xu, Z, Trase, I, Nie, Y, Dong, L, Closson, A, Chen, Z, Zhang, X, “Flexible Piezoelectric Nanogenerators Using Metal-doped ZnO-PVDF Films.” Sens. Actuators A Phys., 305 111912 (2020)CrossRef
73.
go back to reference Göktaş, A, Tumbul, A, Aba, Z, Durgun, M, "Mg Doping Levels and Annealing Temperature Induced Structural, Optical and Electrical Properties of Highly c-axis Oriented ZnO:Mg Thin Films and Al/ZnO:Mg/p-Si/Al Heterojunction Diode." Thin Solid Films, 680 (2019) Göktaş, A, Tumbul, A, Aba, Z, Durgun, M, "Mg Doping Levels and Annealing Temperature Induced Structural, Optical and Electrical Properties of Highly c-axis Oriented ZnO:Mg Thin Films and Al/ZnO:Mg/p-Si/Al Heterojunction Diode." Thin Solid Films, 680 (2019)
74.
go back to reference Habib, M, Lee, MH, Kim, DJ, Choi, HI, Kim, M-H, Kim, W-J, Song, TK, “Phase Evolution and Origin of the High Piezoelectric Properties in Lead-Free BiFeO3–BaTiO3 Ceramics.” Ceram. Int., 46 (14) 22239–22252 (2020)CrossRef Habib, M, Lee, MH, Kim, DJ, Choi, HI, Kim, M-H, Kim, W-J, Song, TK, “Phase Evolution and Origin of the High Piezoelectric Properties in Lead-Free BiFeO3–BaTiO3 Ceramics.” Ceram. Int., 46 (14) 22239–22252 (2020)CrossRef
75.
go back to reference Duan, S, Wu, J, Xia, J, Lei, W, “Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors.” Sensors, 20 (10) 2820 (2020)CrossRef Duan, S, Wu, J, Xia, J, Lei, W, “Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors.” Sensors, 20 (10) 2820 (2020)CrossRef
76.
go back to reference Maity, K, Garain, S, Henkel, K, Schmeißer, D, Mandal, D, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor.” ACS Appl. Polym. Mater., 2 (2) 862–878 (2020)CrossRef Maity, K, Garain, S, Henkel, K, Schmeißer, D, Mandal, D, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor.” ACS Appl. Polym. Mater., 2 (2) 862–878 (2020)CrossRef
77.
go back to reference Khalifa, M, Anandhan, S, “PVDF Nanofibers with Embedded Polyaniline-Graphitic Carbon Nitride Nanosheet Composites for Piezoelectric Energy Conversion.” ACS Appl. Nano Mater., 2 (11) 7328–7339 (2019)CrossRef Khalifa, M, Anandhan, S, “PVDF Nanofibers with Embedded Polyaniline-Graphitic Carbon Nitride Nanosheet Composites for Piezoelectric Energy Conversion.” ACS Appl. Nano Mater., 2 (11) 7328–7339 (2019)CrossRef
78.
go back to reference Han, W, Wu, Z, Li, Y, Wang, Y, “Graphene Family Nanomaterials (GFNs)—Promising Materials for Antimicrobial Coating and film: A Review.” Chem. Eng. J., 358 1022–1037 (2019)CrossRef Han, W, Wu, Z, Li, Y, Wang, Y, “Graphene Family Nanomaterials (GFNs)—Promising Materials for Antimicrobial Coating and film: A Review.” Chem. Eng. J., 358 1022–1037 (2019)CrossRef
79.
go back to reference Li, H, Tian, C, Deng, ZD, “Energy Harvesting from Low Frequency Applications Using Piezoelectric Materials.” Appl. Phys. Rev., 1 (4) 041301 (2014)CrossRef Li, H, Tian, C, Deng, ZD, “Energy Harvesting from Low Frequency Applications Using Piezoelectric Materials.” Appl. Phys. Rev., 1 (4) 041301 (2014)CrossRef
80.
go back to reference Sun, Z, Yang, L, Liu, S, Zhao, J, Hu, Z, Song, W, “A Green Triboelectric Nano-Generator Composite of Degradable Cellulose, Piezoelectric Polymers of PVDF/PA(6,) and Nanoparticles of BaTiO(3).” Sensors (Basel, Switzerland), 20 (2) 506 (2020)CrossRef Sun, Z, Yang, L, Liu, S, Zhao, J, Hu, Z, Song, W, “A Green Triboelectric Nano-Generator Composite of Degradable Cellulose, Piezoelectric Polymers of PVDF/PA(6,) and Nanoparticles of BaTiO(3).” Sensors (Basel, Switzerland), 20 (2) 506 (2020)CrossRef
81.
go back to reference Kawai, H, “The Piezoelectricity of Poly (vinylidene Fluoride).” Jpn. J. Appl. Phys., 8 (7) 975–976 (1969)CrossRef Kawai, H, “The Piezoelectricity of Poly (vinylidene Fluoride).” Jpn. J. Appl. Phys., 8 (7) 975–976 (1969)CrossRef
82.
go back to reference Guo, HF, Li, ZS, Dong, SW, Chen, WJ, Deng, L, Wang, YF, Ying, DJ, “Piezoelectric PU/PVDF Electrospun Scaffolds for Wound Healing Applications.” Colloids Surf B Biointerfaces, 96 29–36 (2012)CrossRef Guo, HF, Li, ZS, Dong, SW, Chen, WJ, Deng, L, Wang, YF, Ying, DJ, “Piezoelectric PU/PVDF Electrospun Scaffolds for Wound Healing Applications.” Colloids Surf B Biointerfaces, 96 29–36 (2012)CrossRef
83.
go back to reference Nilsson, E, Lund, A, Jonasson, C, Johansson, C, Hagström, B, “Poling and Characterization of Piezoelectric Polymer Fibers for Use in Textile Sensors.” Sens. Actuators Phys., 201 477–486 (2013)CrossRef Nilsson, E, Lund, A, Jonasson, C, Johansson, C, Hagström, B, “Poling and Characterization of Piezoelectric Polymer Fibers for Use in Textile Sensors.” Sens. Actuators Phys., 201 477–486 (2013)CrossRef
84.
go back to reference Harrison, JS, Ounaies, Z, "Piezoelectric Polymers." Encycl. Polym. Sci. Technol. Harrison, JS, Ounaies, Z, "Piezoelectric Polymers." Encycl. Polym. Sci. Technol.
85.
go back to reference Åkerfeldt, M, Nilsson, E, Gillgard, P, Walkenström, P, “Textile Piezoelectric Sensors—Melt Spun Bi-component Poly(vinylidene fluoride) Fibres with Conductive Cores and Poly(3,4-ethylene dioxythiophene)-Poly(styrene sulfonate) Coating as the Outer Electrode.” Fash. Text, 1 (1) 13 (2014)CrossRef Åkerfeldt, M, Nilsson, E, Gillgard, P, Walkenström, P, “Textile Piezoelectric Sensors—Melt Spun Bi-component Poly(vinylidene fluoride) Fibres with Conductive Cores and Poly(3,4-ethylene dioxythiophene)-Poly(styrene sulfonate) Coating as the Outer Electrode.” Fash. Text, 1 (1) 13 (2014)CrossRef
86.
go back to reference Hadimani, R, Bayramol, DV, Sion, N, Shah, T, Qian, L, Shi, S, Siores, E, “Continuous Production of Piezoelectric PVDF Fibre for e-Textile Applications.” Smart Mater. Struct., 22 075017 (2013)CrossRef Hadimani, R, Bayramol, DV, Sion, N, Shah, T, Qian, L, Shi, S, Siores, E, “Continuous Production of Piezoelectric PVDF Fibre for e-Textile Applications.” Smart Mater. Struct., 22 075017 (2013)CrossRef
87.
go back to reference Waqar, S, Wang, L, John, S, "Piezoelectric Energy Harvesting from Intelligent Textiles." Electroni.Text., pp. 173–197. Elsevier (2015) Waqar, S, Wang, L, John, S, "Piezoelectric Energy Harvesting from Intelligent Textiles." Electroni.Text., pp. 173–197. Elsevier (2015)
88.
go back to reference Williams, C, Yates, RB, “Analysis of a Micro-electric Generator for Microsystems.” Sens. Actuators A Phys., 52 (1–3) 8–11 (1996)CrossRef Williams, C, Yates, RB, “Analysis of a Micro-electric Generator for Microsystems.” Sens. Actuators A Phys., 52 (1–3) 8–11 (1996)CrossRef
89.
go back to reference Lu, Q, Liu, L, Scarpa, F, Leng, J, Liu, Y, “A Novel Composite Multi-layer Piezoelectric Energy Harvester.” Compos. Struct., 201 121–130 (2018)CrossRef Lu, Q, Liu, L, Scarpa, F, Leng, J, Liu, Y, “A Novel Composite Multi-layer Piezoelectric Energy Harvester.” Compos. Struct., 201 121–130 (2018)CrossRef
90.
go back to reference Liu, H, Zhong, J, Lee, C, Lee, S-W, Lin, L, “A Comprehensive Review on Piezoelectric Energy Harvesting Technol.ogy: Materials, Mechanisms, and Applications.” Appl. Phys. Rev., 5 (4) 041306 (2018)CrossRef Liu, H, Zhong, J, Lee, C, Lee, S-W, Lin, L, “A Comprehensive Review on Piezoelectric Energy Harvesting Technol.ogy: Materials, Mechanisms, and Applications.” Appl. Phys. Rev., 5 (4) 041306 (2018)CrossRef
91.
go back to reference Erturk, A, Inman, DJ, Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef Erturk, A, Inman, DJ, Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef
92.
go back to reference Izadgoshasb, I, “Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities.” Sensors, 21 (24) 8332 (2021)CrossRef Izadgoshasb, I, “Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities.” Sensors, 21 (24) 8332 (2021)CrossRef
93.
go back to reference Hofmann, P, Walch, A, Dinkelmann, A, Selvarayan, SK, Gresser, GT, “Woven Piezoelectric Sensors as Part of the Textile Reinforcement of Fiber Reinforced Plastics.” Compos. Part A Appl. Sci. Manuf., 116 79–86 (2019)CrossRef Hofmann, P, Walch, A, Dinkelmann, A, Selvarayan, SK, Gresser, GT, “Woven Piezoelectric Sensors as Part of the Textile Reinforcement of Fiber Reinforced Plastics.” Compos. Part A Appl. Sci. Manuf., 116 79–86 (2019)CrossRef
94.
go back to reference Proto, A, Penhaker, M, Conforto, S, Schmid, M, “Nanogenerators for Human Body Energy Harvesting.” Trends Biotechnol., 35 (7) 610–624 (2017)CrossRef Proto, A, Penhaker, M, Conforto, S, Schmid, M, “Nanogenerators for Human Body Energy Harvesting.” Trends Biotechnol., 35 (7) 610–624 (2017)CrossRef
95.
go back to reference DeRossi, D, DeReggi, AS, Broadhurst, MG, Roth, SC, Davis, GT, “Method of Evaluating the Thermal Stability of the Pyroelectric Properties of Polyvinylidene Fluoride: Effects of Poling Temperature and Field.” J. Appl. Phys., 53 (10) 6520–6525 (1982)CrossRef DeRossi, D, DeReggi, AS, Broadhurst, MG, Roth, SC, Davis, GT, “Method of Evaluating the Thermal Stability of the Pyroelectric Properties of Polyvinylidene Fluoride: Effects of Poling Temperature and Field.” J. Appl. Phys., 53 (10) 6520–6525 (1982)CrossRef
96.
go back to reference Marchiori, B, Regal, S, Arango, Y, Delattre, R, Blayac, S, Ramuz, M, “PVDF-TrFE-Based Stretchable Contact and Non-Contact Temperature Sensor for E-Skin Application.” Sensors (Basel), 20 (3) 623 (2020)CrossRef Marchiori, B, Regal, S, Arango, Y, Delattre, R, Blayac, S, Ramuz, M, “PVDF-TrFE-Based Stretchable Contact and Non-Contact Temperature Sensor for E-Skin Application.” Sensors (Basel), 20 (3) 623 (2020)CrossRef
97.
go back to reference Wegener, M, Gerhard-Multhaupt, R, “Electric poling and Electromechanical Characterization of 0.1-mm-Thick Sensor Films and 0.2-mm-Thick Cable Layers from Poly(Vinylidene Fluoride-Trifluroethylene).” IEEE Trans. Ultrason Ferroelectric Freq. Control, 50 (7) 921–931 (2003)CrossRef Wegener, M, Gerhard-Multhaupt, R, “Electric poling and Electromechanical Characterization of 0.1-mm-Thick Sensor Films and 0.2-mm-Thick Cable Layers from Poly(Vinylidene Fluoride-Trifluroethylene).” IEEE Trans. Ultrason Ferroelectric Freq. Control, 50 (7) 921–931 (2003)CrossRef
98.
go back to reference Fedosov, S, Sergeeva, A, Revenyuk, TA, Butenko, A, "Application of Corona Discharge for Poling Ferroelectric and Nonlinear Optical Polymers." Mater. Sci. (2007) Fedosov, S, Sergeeva, A, Revenyuk, TA, Butenko, A, "Application of Corona Discharge for Poling Ferroelectric and Nonlinear Optical Polymers." Mater. Sci. (2007)
99.
go back to reference Rathinasamy, S, Sarathi, T, Venkataraman, KK, Bhattacharyya, A, “Enhanced Piezoelectric Properties of Polyvinylidene Fluoride Nanofibers Using Carbon Nanofiber and Electrical Poling.” Mater. Lett., 255 126515 (2019)CrossRef Rathinasamy, S, Sarathi, T, Venkataraman, KK, Bhattacharyya, A, “Enhanced Piezoelectric Properties of Polyvinylidene Fluoride Nanofibers Using Carbon Nanofiber and Electrical Poling.” Mater. Lett., 255 126515 (2019)CrossRef
100.
go back to reference Wang, TT, Seggern, H, “High Electric Field Poling of Electroded Poly(vinylidene Fluoride) at Room Temperature.” J. Appl. Phys., 54 (8) 4602–4604 (1983)CrossRef Wang, TT, Seggern, H, “High Electric Field Poling of Electroded Poly(vinylidene Fluoride) at Room Temperature.” J. Appl. Phys., 54 (8) 4602–4604 (1983)CrossRef
101.
go back to reference Collins, GE, Buckley, LJ, “Conductive Polymer-Coated Fabrics for Chemical Sensing.” Synth. Metals, 78 (2) 93–101 (1996)CrossRef Collins, GE, Buckley, LJ, “Conductive Polymer-Coated Fabrics for Chemical Sensing.” Synth. Metals, 78 (2) 93–101 (1996)CrossRef
102.
go back to reference Xue, P, Tao, X, Kwok, K, Leung, M, Yu, T, “Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer.” Text. Res. J., 74 929–936 (2004)CrossRef Xue, P, Tao, X, Kwok, K, Leung, M, Yu, T, “Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer.” Text. Res. J., 74 929–936 (2004)CrossRef
103.
go back to reference Li, Y, Leung, M, Tao, X, Cheng, XY, Tsang, J, Yuen, M, “Polypyrrole-Coated Conductive Fabrics as a Candidate for Strain Sensors.” J. Mater. Sci., 40 4093–4095 (2005)CrossRef Li, Y, Leung, M, Tao, X, Cheng, XY, Tsang, J, Yuen, M, “Polypyrrole-Coated Conductive Fabrics as a Candidate for Strain Sensors.” J. Mater. Sci., 40 4093–4095 (2005)CrossRef
104.
go back to reference Chen, Y, Geever, LM, Killion, JA, Lyons, JG, Higginbotham, CL, Devine, DM, “Review of Multifarious Applications of Poly (Lactic Acid).” Polym.-Plast. Technol. Eng., 55 (10) 1057–1075 (2016)CrossRef Chen, Y, Geever, LM, Killion, JA, Lyons, JG, Higginbotham, CL, Devine, DM, “Review of Multifarious Applications of Poly (Lactic Acid).” Polym.-Plast. Technol. Eng., 55 (10) 1057–1075 (2016)CrossRef
105.
go back to reference Zhao, C, Zhang, J, Wang, ZL, Ren, K, “A Poly(l-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications.” Adv. Sustain Syst., 1 (9) 1700068 (2017)CrossRef Zhao, C, Zhang, J, Wang, ZL, Ren, K, “A Poly(l-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications.” Adv. Sustain Syst., 1 (9) 1700068 (2017)CrossRef
106.
go back to reference Varga, M, Morvan, J, Diorio, N, Buyuktanir, E, Harden, J, West, JL, Jákli, A, “Direct Piezoelectric Responses of Soft Composite Fiber Mats.” Appl. Phys. Lett., 102 (15) 153903 (2013)CrossRef Varga, M, Morvan, J, Diorio, N, Buyuktanir, E, Harden, J, West, JL, Jákli, A, “Direct Piezoelectric Responses of Soft Composite Fiber Mats.” Appl. Phys. Lett., 102 (15) 153903 (2013)CrossRef
107.
go back to reference Patel, I, Siores, E, Shah, T, “Utilisation of Smart Polymers and Ceramic Based Piezoelectric Materials for Scavenging Wasted Energy.” Sens. Actuators A Phys., 159 (2) 213–218 (2010)CrossRef Patel, I, Siores, E, Shah, T, “Utilisation of Smart Polymers and Ceramic Based Piezoelectric Materials for Scavenging Wasted Energy.” Sens. Actuators A Phys., 159 (2) 213–218 (2010)CrossRef
108.
go back to reference Lee, H, Kim, H, Kim, DY, Seo, Y, “Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers.” ACS Omega, 4 (2) 2610–2617 (2019)CrossRef Lee, H, Kim, H, Kim, DY, Seo, Y, “Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers.” ACS Omega, 4 (2) 2610–2617 (2019)CrossRef
109.
go back to reference Sobocinski, M, Leinonen, M, Juuti, J, Mantyniemi, N, Jantunen, H, “A Co-fired LTCC-PZT Monomorph Bridge Type Acceleration Sensor.” Sens. Actuators A Phys., 216 370–375 (2014)CrossRef Sobocinski, M, Leinonen, M, Juuti, J, Mantyniemi, N, Jantunen, H, “A Co-fired LTCC-PZT Monomorph Bridge Type Acceleration Sensor.” Sens. Actuators A Phys., 216 370–375 (2014)CrossRef
110.
go back to reference Mellinger, A, Wegener, M, Wirges, W, Mallepally, RR, Gerhard-Multhaupt, R, “Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites.” Ferroelectrics, 331 (1) 189–199 (2006)CrossRef Mellinger, A, Wegener, M, Wirges, W, Mallepally, RR, Gerhard-Multhaupt, R, “Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites.” Ferroelectrics, 331 (1) 189–199 (2006)CrossRef
111.
go back to reference Yong, S, Shi, J, Beeby, S, “Wearable Textile Power Module Based on Flexible Ferroelectret and Supercapacitor.” Energy Technol., 7 (5) 1800938 (2019)CrossRef Yong, S, Shi, J, Beeby, S, “Wearable Textile Power Module Based on Flexible Ferroelectret and Supercapacitor.” Energy Technol., 7 (5) 1800938 (2019)CrossRef
112.
go back to reference Beeby, S, Torah, R, Tudor, J, Grabham, N, Yong, S, Arumugam, S, Li, Y, Shi, J, Energy Harvesting Power Supplies for Electronic Textiles (2019) Beeby, S, Torah, R, Tudor, J, Grabham, N, Yong, S, Arumugam, S, Li, Y, Shi, J, Energy Harvesting Power Supplies for Electronic Textiles (2019)
113.
go back to reference Katabira, K, Yoshida, Y, Masuda, A, Watanabe, A, Narita, F, “Fabrication of Fe-Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation.” Materials (Basel, Switzerland), 11 (3) 406 (2018)CrossRef Katabira, K, Yoshida, Y, Masuda, A, Watanabe, A, Narita, F, “Fabrication of Fe-Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation.” Materials (Basel, Switzerland), 11 (3) 406 (2018)CrossRef
114.
go back to reference Babu, I, de With, G, “Highly Flexible Piezoelectric 0–3 PZT–PDMS Composites with High Filler Content.” Compos. Sci. Technol., 91 91–97 (2014)CrossRef Babu, I, de With, G, “Highly Flexible Piezoelectric 0–3 PZT–PDMS Composites with High Filler Content.” Compos. Sci. Technol., 91 91–97 (2014)CrossRef
115.
go back to reference Gayathiri, S, Panneerselvam, G, Annamalai, V, "Piezoelectric Ceramic-Polymer Composites as Smart Materials: An Overview of Preparation Methods." J. Environ. Nanotechnol., 06 (2017) Gayathiri, S, Panneerselvam, G, Annamalai, V, "Piezoelectric Ceramic-Polymer Composites as Smart Materials: An Overview of Preparation Methods." J. Environ. Nanotechnol., 06 (2017)
116.
go back to reference Song, Y, Shen, Y, Liu, H, Lin, Y, Nan, CW, “Enhanced Dielectric and Ferroelectric Properties Induced by Dopamine-Modified BaTiO3 Nanofibers in Flexible Poly(Vinylidene Fluoride-Trifluoroethylene) Nanocomposites.” J. Mater. Chem., 22 8063–8068 (2012)CrossRef Song, Y, Shen, Y, Liu, H, Lin, Y, Nan, CW, “Enhanced Dielectric and Ferroelectric Properties Induced by Dopamine-Modified BaTiO3 Nanofibers in Flexible Poly(Vinylidene Fluoride-Trifluoroethylene) Nanocomposites.” J. Mater. Chem., 22 8063–8068 (2012)CrossRef
117.
go back to reference Yaqoob, U, “Synthesis and Characterization of the PVDF-BTO Nanocomposites with the Employment of RGO Sheets for Flexible Energy harvesters.” Procedia Eng., 168 1074–1077 (2016)CrossRef Yaqoob, U, “Synthesis and Characterization of the PVDF-BTO Nanocomposites with the Employment of RGO Sheets for Flexible Energy harvesters.” Procedia Eng., 168 1074–1077 (2016)CrossRef
118.
go back to reference Rahman, M, Chung, G-S, “Synthesis of PVDF-Graphene Nanocomposites and Their Properties.” J. Alloys Compd., 581 724–730 (2013)CrossRef Rahman, M, Chung, G-S, “Synthesis of PVDF-Graphene Nanocomposites and Their Properties.” J. Alloys Compd., 581 724–730 (2013)CrossRef
119.
go back to reference Jadidian, B, Allahverdi, M, Mohammadi, F, Safari, A, “Processing of Piezoelectric Fiber/Polymer Composites with 3–3 Connectivity.” J. Electroceram., 8 (3) 209–214 (2002)CrossRef Jadidian, B, Allahverdi, M, Mohammadi, F, Safari, A, “Processing of Piezoelectric Fiber/Polymer Composites with 3–3 Connectivity.” J. Electroceram., 8 (3) 209–214 (2002)CrossRef
120.
go back to reference Kakimoto, K, Fukata, K, Ogawa, H, “Fabrication of Fibrous BaTiO3-Reinforced PVDF Composite Sheet for Transducer Application.” Sens. Actuators A Phys., 200 21–25 (2013)CrossRef Kakimoto, K, Fukata, K, Ogawa, H, “Fabrication of Fibrous BaTiO3-Reinforced PVDF Composite Sheet for Transducer Application.” Sens. Actuators A Phys., 200 21–25 (2013)CrossRef
121.
go back to reference Tiwari, V, Srivastava, G, “Structural, Dielectric and Piezoelectric Properties of 0–3 PZT/PVDF Composites.” Ceram. Int., 41 (6) 8008–8013 (2015)CrossRef Tiwari, V, Srivastava, G, “Structural, Dielectric and Piezoelectric Properties of 0–3 PZT/PVDF Composites.” Ceram. Int., 41 (6) 8008–8013 (2015)CrossRef
122.
go back to reference Mohammadi, F, Khan, A, Cass, RB, "Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites." MRS Proc., 736 D5.5 (2002) Mohammadi, F, Khan, A, Cass, RB, "Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites." MRS Proc., 736 D5.5 (2002)
123.
go back to reference Li, J, Takagi, K, Terakubo, N, Watanabe, R, "Electrical and Mechanical Properties of Piezoelectric Ceramic/metal Composites in the Pb(Zr, Ti)O3/Pt System." Appl. Phys Lett, 79 (2001) Li, J, Takagi, K, Terakubo, N, Watanabe, R, "Electrical and Mechanical Properties of Piezoelectric Ceramic/metal Composites in the Pb(Zr, Ti)O3/Pt System." Appl. Phys Lett, 79 (2001)
124.
go back to reference Dodds, J, Meyers, F, Loh, K, “Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced With ZnO Nanoparticles.” Sens. J. IEEE, 12 1889–1890 (2012)CrossRef Dodds, J, Meyers, F, Loh, K, “Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced With ZnO Nanoparticles.” Sens. J. IEEE, 12 1889–1890 (2012)CrossRef
125.
go back to reference Ouyang, Z-W, Chen, E-C, Wu, T-M, “Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites.” Materials (Basel, Switzerland), 8 (7) 4553–4564 (2015)CrossRef Ouyang, Z-W, Chen, E-C, Wu, T-M, “Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites.” Materials (Basel, Switzerland), 8 (7) 4553–4564 (2015)CrossRef
126.
go back to reference Almusallam, A, Luo, Z, Komolafe, A, Yang, K, Robinson, A, Torah, R, Beeby, S, “Flexible Piezoelectric Nano-composite Films for Kinetic Energy Harvesting from Textiles.” Nano Energy, 33 146–156 (2017)CrossRef Almusallam, A, Luo, Z, Komolafe, A, Yang, K, Robinson, A, Torah, R, Beeby, S, “Flexible Piezoelectric Nano-composite Films for Kinetic Energy Harvesting from Textiles.” Nano Energy, 33 146–156 (2017)CrossRef
127.
go back to reference Levinṭa, N, Vuluga, Z, Teodorescu, M, Corobea, MC, “Halogen-free Flame Retardants for Application in Thermoplastics Based on Condensation Polymers.” SN Appl. Sci., 1 (5) 422 (2019)CrossRef Levinṭa, N, Vuluga, Z, Teodorescu, M, Corobea, MC, “Halogen-free Flame Retardants for Application in Thermoplastics Based on Condensation Polymers.” SN Appl. Sci., 1 (5) 422 (2019)CrossRef
128.
go back to reference Huang, L, Lu, C, Wang, F, Wang, L, “Preparation of PVDF/Graphene Ferroelectric Composite Films by In Situ Reduction with Hydrobromic Acids and their Properties.” RSC Adv., 4 (85) 45220–45229 (2014)CrossRef Huang, L, Lu, C, Wang, F, Wang, L, “Preparation of PVDF/Graphene Ferroelectric Composite Films by In Situ Reduction with Hydrobromic Acids and their Properties.” RSC Adv., 4 (85) 45220–45229 (2014)CrossRef
129.
go back to reference Li, R, Xiong, C, Kuang, D, Dong, L, Lei, Y, Yao, J, Jiang, M, Li, L, “Polyamide 11/Poly(vinylidene fluoride) Blends as Novel Flexible Materials for Capacitors.” Macromolecular Rapid Commun., 29 (17) 1449–1454 (2008)CrossRef Li, R, Xiong, C, Kuang, D, Dong, L, Lei, Y, Yao, J, Jiang, M, Li, L, “Polyamide 11/Poly(vinylidene fluoride) Blends as Novel Flexible Materials for Capacitors.” Macromolecular Rapid Commun., 29 (17) 1449–1454 (2008)CrossRef
130.
go back to reference Wan, C, Bowen, C, “Multiscale-Structuring of Polyvinylidene Fluoride for Energy Harvesting: the Impact of Molecular-, Micro- and Macro-Structure.” J. Mater. Chem. A, 5 3091–3128 (2017)CrossRef Wan, C, Bowen, C, “Multiscale-Structuring of Polyvinylidene Fluoride for Energy Harvesting: the Impact of Molecular-, Micro- and Macro-Structure.” J. Mater. Chem. A, 5 3091–3128 (2017)CrossRef
131.
go back to reference Abbas, RR, Rammo, N, Al-Ajaj, EA, “Structure and Piezoelectricity in Blends of PVDF Films PVDF.” J. Kerbala Univ., 6 201–208 (2008) Abbas, RR, Rammo, N, Al-Ajaj, EA, “Structure and Piezoelectricity in Blends of PVDF Films PVDF.” J. Kerbala Univ., 6 201–208 (2008)
132.
go back to reference Karan, SK, Mandal, D, Khatua, BB, “Self-Powered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester.” Nanoscale, 7 (24) 10655–10666 (2015)CrossRef Karan, SK, Mandal, D, Khatua, BB, “Self-Powered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester.” Nanoscale, 7 (24) 10655–10666 (2015)CrossRef
133.
go back to reference Al-Saygh, A, Ponnamma, D, AlMaadeed, MA, Vijayan, P, Karim, A, Hassan, MK, “Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers.” Polymers, 9 (2) 33 (2017)CrossRef Al-Saygh, A, Ponnamma, D, AlMaadeed, MA, Vijayan, P, Karim, A, Hassan, MK, “Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers.” Polymers, 9 (2) 33 (2017)CrossRef
134.
go back to reference Chen, Y, Lloyd, DW, Harlock, SC, “Mechanical Characteristics of Coated Fabrics.” J. Text. Inst., 86 (4) 690–700 (1995)CrossRef Chen, Y, Lloyd, DW, Harlock, SC, “Mechanical Characteristics of Coated Fabrics.” J. Text. Inst., 86 (4) 690–700 (1995)CrossRef
135.
go back to reference Zhang, R, Deng, H, Valenca, R, Jin, J, Fu, Q, Bilotti, E, Peijs, T, “Carbon Nanotube Polymer Coatings for Textile Yarns with Good Strain Sensing Capability.” Sens .Actuators A Phys., 179 83–91 (2012)CrossRef Zhang, R, Deng, H, Valenca, R, Jin, J, Fu, Q, Bilotti, E, Peijs, T, “Carbon Nanotube Polymer Coatings for Textile Yarns with Good Strain Sensing Capability.” Sens .Actuators A Phys., 179 83–91 (2012)CrossRef
136.
go back to reference Depla, D, Segers, S, Leroy, W, Van Hove, T, Van Parys, M, “Smart Textiles: An Explorative Study of the Use of Magnetron Sputter Deposition.” Text. Res. J., 81 (17) 1808–1817 (2011)CrossRef Depla, D, Segers, S, Leroy, W, Van Hove, T, Van Parys, M, “Smart Textiles: An Explorative Study of the Use of Magnetron Sputter Deposition.” Text. Res. J., 81 (17) 1808–1817 (2011)CrossRef
137.
go back to reference Gregory, RV, Kimbrell, WC, Kuhn, HH, “Conductive Textiles.” Synth. Metals, 28 (1) 823–835 (1989)CrossRef Gregory, RV, Kimbrell, WC, Kuhn, HH, “Conductive Textiles.” Synth. Metals, 28 (1) 823–835 (1989)CrossRef
138.
go back to reference Knittel, D, Schollmeyer, E, “Electrically High-Conductive Textiles.” Synth. Metals, 159 (14) 1433–1437 (2009)CrossRef Knittel, D, Schollmeyer, E, “Electrically High-Conductive Textiles.” Synth. Metals, 159 (14) 1433–1437 (2009)CrossRef
139.
go back to reference Zhao, T, Jiang, H, Ma, J, “Surfactant-Assisted Electrochemical Deposition of α-Cobalt Hydroxide for Supercapacitors.” J. Power Sources, 196 860–864 (2011)CrossRef Zhao, T, Jiang, H, Ma, J, “Surfactant-Assisted Electrochemical Deposition of α-Cobalt Hydroxide for Supercapacitors.” J. Power Sources, 196 860–864 (2011)CrossRef
140.
go back to reference Ren, F, Yin, L, Wang, S, Volinsky, AA, Tian, B, “Cyanide-free Silver Electroplating Process in Thiosulfate Bath and Microstructure Analysis of Ag Coatings.” Trans. Nonferrous Metals Soc. China, 23 (12) 3822–3828 (2013)CrossRef Ren, F, Yin, L, Wang, S, Volinsky, AA, Tian, B, “Cyanide-free Silver Electroplating Process in Thiosulfate Bath and Microstructure Analysis of Ag Coatings.” Trans. Nonferrous Metals Soc. China, 23 (12) 3822–3828 (2013)CrossRef
141.
go back to reference Inagaki, M, Yang, Y, Kang, F, “Carbon Nanofibers Prepared via Electrospinning.” Adv. Mater., 24 (19) 2547–2566 (2012)CrossRef Inagaki, M, Yang, Y, Kang, F, “Carbon Nanofibers Prepared via Electrospinning.” Adv. Mater., 24 (19) 2547–2566 (2012)CrossRef
142.
go back to reference Huang, C-T, Shen, C-L, Tang, C-F, Chang, S-H, “A Wearable Yarn-based Piezo-Resistive Sensor.” Sens. Actuators A Phys., 141 396–403 (2008)CrossRef Huang, C-T, Shen, C-L, Tang, C-F, Chang, S-H, “A Wearable Yarn-based Piezo-Resistive Sensor.” Sens. Actuators A Phys., 141 396–403 (2008)CrossRef
143.
go back to reference Hida, H, Hamamura, T, Nishi, T, Tan, G, Umegaki, T, Kanno, I, “Piezoelectric Characterization of Pb(Zr,Ti)O3 thin Films Deposited on Metal Foil Substrates by Dip Coating.” Jpn. J. Appl. Phys., 56 (10) 10 (2017) Hida, H, Hamamura, T, Nishi, T, Tan, G, Umegaki, T, Kanno, I, “Piezoelectric Characterization of Pb(Zr,Ti)O3 thin Films Deposited on Metal Foil Substrates by Dip Coating.” Jpn. J. Appl. Phys., 56 (10) 10 (2017)
144.
go back to reference Xing, R, Wang, Z, Han, Y, “Embossing of Polymers Using a Thermosetting Polymer Mold Made by Soft Lithography.” J. Vac. Sci. Technol., 21 (4) 1318–1322 (2003)CrossRef Xing, R, Wang, Z, Han, Y, “Embossing of Polymers Using a Thermosetting Polymer Mold Made by Soft Lithography.” J. Vac. Sci. Technol., 21 (4) 1318–1322 (2003)CrossRef
145.
go back to reference Acar, G, Ozturk, O, Golparvar, AJ, Elboshra, TA, Böhringer, K, Yapici, MK, “Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review.” Electronics, 8 (5) 479 (2019)CrossRef Acar, G, Ozturk, O, Golparvar, AJ, Elboshra, TA, Böhringer, K, Yapici, MK, “Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review.” Electronics, 8 (5) 479 (2019)CrossRef
146.
go back to reference Qin, H, Li, J, He, B, Sun, J, Li, L, Qian, L, “Novel Wearable Electrodes Based on Conductive Chitosan Fabrics and Their Application in Smart Garments.” Materials (Basel, Switzerland), 11 (3) 370 (2018)CrossRef Qin, H, Li, J, He, B, Sun, J, Li, L, Qian, L, “Novel Wearable Electrodes Based on Conductive Chitosan Fabrics and Their Application in Smart Garments.” Materials (Basel, Switzerland), 11 (3) 370 (2018)CrossRef
147.
go back to reference Apiwattanadej, T, Zhang, L, Li, H, “Electrospun Polyurethane Microfiber Membrane on Conductive Textile for Water-Supported Textile Electrode in Continuous ECG Monitoring Application.” Proc. 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 22–25 May 2018 Apiwattanadej, T, Zhang, L, Li, H, “Electrospun Polyurethane Microfiber Membrane on Conductive Textile for Water-Supported Textile Electrode in Continuous ECG Monitoring Application.” Proc. 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 22–25 May 2018
148.
go back to reference Qiu, J, Tani, J, Yamada, N, Takahashi, H, Fabrication of Piezoelectric Fibers with Metal Core. SPIE, Bellingham (2003)CrossRef Qiu, J, Tani, J, Yamada, N, Takahashi, H, Fabrication of Piezoelectric Fibers with Metal Core. SPIE, Bellingham (2003)CrossRef
149.
go back to reference Kim, JH, Kim, B, Kim, SW, Kang, HW, Park, MC, Park, DH, Ju, BK, Choi, WK, “High-Performance Coaxial Piezoelectric Energy Generator (C-PEG) Yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag.” Nanotechnology, 32 (14) 145401 (2021)CrossRef Kim, JH, Kim, B, Kim, SW, Kang, HW, Park, MC, Park, DH, Ju, BK, Choi, WK, “High-Performance Coaxial Piezoelectric Energy Generator (C-PEG) Yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag.” Nanotechnology, 32 (14) 145401 (2021)CrossRef
150.
go back to reference Poggio, C, Trovati, F, Ceci, M, Chiesa, M, Colombo, M, Pietrocola, G, “Biological and Antibacterial Properties of A New Silver Fiber Post: In Vitro Evaluation.” J. Clin. Exp. Dent., 9 (3) e387–e393 (2017) Poggio, C, Trovati, F, Ceci, M, Chiesa, M, Colombo, M, Pietrocola, G, “Biological and Antibacterial Properties of A New Silver Fiber Post: In Vitro Evaluation.” J. Clin. Exp. Dent., 9 (3) e387–e393 (2017)
151.
go back to reference Puurtinen, MM, Komulainen, SM, Kauppinen, PK, Malmivuo, JA, Hyttinen, JA, “Measurement of Noise and Impedance of Dry and Wet Textile Electrodes, and Textile Electrodes with Hydrogel.” Conf. Proc. IEEE Eng. Med .Biol. Soc., 2006 6012–6015 (2006)CrossRef Puurtinen, MM, Komulainen, SM, Kauppinen, PK, Malmivuo, JA, Hyttinen, JA, “Measurement of Noise and Impedance of Dry and Wet Textile Electrodes, and Textile Electrodes with Hydrogel.” Conf. Proc. IEEE Eng. Med .Biol. Soc., 2006 6012–6015 (2006)CrossRef
152.
go back to reference Ishijima, M, “Cardiopulmonary Monitoring by Textile Electrodes Without Subject-Awareness of Being Monitored.” Med. Biol. Eng. Comput., 35 (6) 685–690 (1997)CrossRef Ishijima, M, “Cardiopulmonary Monitoring by Textile Electrodes Without Subject-Awareness of Being Monitored.” Med. Biol. Eng. Comput., 35 (6) 685–690 (1997)CrossRef
153.
go back to reference Márquez, JC, Seoane, F, Välimäki, E, Lindecrantz, K, “Comparison of Dry-Textile Electrodes For Electrical Bioimpedance Spectroscopy Measurements.” Med. Biol. Eng. Comput., 224 012140 (2010)CrossRef Márquez, JC, Seoane, F, Välimäki, E, Lindecrantz, K, “Comparison of Dry-Textile Electrodes For Electrical Bioimpedance Spectroscopy Measurements.” Med. Biol. Eng. Comput., 224 012140 (2010)CrossRef
154.
go back to reference Catrysse, M, Puers, R, Hertleer, C, Van Langenhove, L, Egmond, H, Matthys, D, “Towards the Integration of Textile Sensors in a Wireless Monitoring Suit.” Sens. Actuators A Phys., 114 302–311 (2004)CrossRef Catrysse, M, Puers, R, Hertleer, C, Van Langenhove, L, Egmond, H, Matthys, D, “Towards the Integration of Textile Sensors in a Wireless Monitoring Suit.” Sens. Actuators A Phys., 114 302–311 (2004)CrossRef
155.
go back to reference Mestrovic, M, Helmer, R, Kyratzis, I, Kumar, D, “Preliminary Study of Dry Knitted Fabric Electrodes for Physiological Monitoring” (2008) Mestrovic, M, Helmer, R, Kyratzis, I, Kumar, D, “Preliminary Study of Dry Knitted Fabric Electrodes for Physiological Monitoring” (2008)
156.
go back to reference Ali, A, Nguyen, NHA, Baheti, V, Ashraf, M, Militky, J, Mansoor, T, Noman, MT, Ahmad, S, “Electrical Conductivity And Physiological Comfort of Silver Coated Cotton Fabrics.” J. Text. Inst., 109 (5) 620–628 (2018)CrossRef Ali, A, Nguyen, NHA, Baheti, V, Ashraf, M, Militky, J, Mansoor, T, Noman, MT, Ahmad, S, “Electrical Conductivity And Physiological Comfort of Silver Coated Cotton Fabrics.” J. Text. Inst., 109 (5) 620–628 (2018)CrossRef
157.
go back to reference Shukla, VJNA, “Review of Electromagnetic Interference Shielding Materials Fabricated by Iron Ingredients.” Nanoscale Adv., 1 (5) 1640–1671 (2019)CrossRef Shukla, VJNA, “Review of Electromagnetic Interference Shielding Materials Fabricated by Iron Ingredients.” Nanoscale Adv., 1 (5) 1640–1671 (2019)CrossRef
158.
go back to reference Sun, C, Li, X, Cai, Z, Ge, FJEA, “Carbonized Cotton Fabric In-Situ Electrodeposition Polypyrrole as High-Performance Flexible Electrode for Wearable Supercapacitor.” Electrochimica Acta, 296 617–626 (2019)CrossRef Sun, C, Li, X, Cai, Z, Ge, FJEA, “Carbonized Cotton Fabric In-Situ Electrodeposition Polypyrrole as High-Performance Flexible Electrode for Wearable Supercapacitor.” Electrochimica Acta, 296 617–626 (2019)CrossRef
159.
go back to reference Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, Physical, AA, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)CrossRef Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, Physical, AA, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)CrossRef
160.
go back to reference Burgués-Ceballos, I, Stella, M, Lacharmoise, P, Martinez-Ferrero, E, “Towards Industrialization of Polymer Solar Cells: Material Processing for Upscaling.” J. Mater. Chem. A, 2 (42) 17711–17722 (2014)CrossRef Burgués-Ceballos, I, Stella, M, Lacharmoise, P, Martinez-Ferrero, E, “Towards Industrialization of Polymer Solar Cells: Material Processing for Upscaling.” J. Mater. Chem. A, 2 (42) 17711–17722 (2014)CrossRef
161.
go back to reference Shang, SM, Zeng, W, “4 - Conductive Nanofibres and Nanocoatings for Smart Textiles.” In: Kirstein, T (ed.) Multidisciplinary Know-How for Smart-Textiles Developers, pp. 92–128. Woodhead Publishing, Sawston (2013)CrossRef Shang, SM, Zeng, W, “4 - Conductive Nanofibres and Nanocoatings for Smart Textiles.” In: Kirstein, T (ed.) Multidisciplinary Know-How for Smart-Textiles Developers, pp. 92–128. Woodhead Publishing, Sawston (2013)CrossRef
162.
go back to reference Sen, AK, Coated Textiles: Principles and Applications. 2nd Edition (2007) Sen, AK, Coated Textiles: Principles and Applications. 2nd Edition (2007)
163.
go back to reference Wu, Y, Sun, J, Li, L, Ding, Y, Xu, H, “Performance Evaluation of a Novel Cloth Electrode.” Proc. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 18–20 June 2010, 2010 Wu, Y, Sun, J, Li, L, Ding, Y, Xu, H, “Performance Evaluation of a Novel Cloth Electrode.” Proc. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 18–20 June 2010, 2010
164.
go back to reference Lam, CL, Rajdi, NNZM and Wicaksono, DHB, “MWCNT/Cotton-Based Flexible Electrode for Electrocardiography.” Proc. SENSORS, 2013 IEEE, 3–6 Nov. 2013, 2013 Lam, CL, Rajdi, NNZM and Wicaksono, DHB, “MWCNT/Cotton-Based Flexible Electrode for Electrocardiography.” Proc. SENSORS, 2013 IEEE, 3–6 Nov. 2013, 2013
165.
go back to reference Novoselov, KS, Fal’ko, VI, Colombo, L, Gellert, PR, Schwab, MG, Kim, K, “A Roadmap for Graphene.” Nature, 490 (7419) 192–200 (2012)CrossRef Novoselov, KS, Fal’ko, VI, Colombo, L, Gellert, PR, Schwab, MG, Kim, K, “A Roadmap for Graphene.” Nature, 490 (7419) 192–200 (2012)CrossRef
166.
go back to reference Molina, J, “Graphene-Based Fabrics and Their Applications: A Review.” RSC Adv., 6 (72) 68261–68291 (2016)CrossRef Molina, J, “Graphene-Based Fabrics and Their Applications: A Review.” RSC Adv., 6 (72) 68261–68291 (2016)CrossRef
167.
go back to reference Acar, G, Ozturk, O, Yapici, MK, Wearable Graphene Nanotextile Embedded Smart Armband for Cardiac Monitoring. Proc. 2018 IEEE Sensors, 2018 Acar, G, Ozturk, O, Yapici, MK, Wearable Graphene Nanotextile Embedded Smart Armband for Cardiac Monitoring. Proc. 2018 IEEE Sensors, 2018
168.
go back to reference Jang, S, Cho, J, Jeong, K, Cho, G, “Exploring Possibilities of ECG Electrodes for Bio-monitoring Smartwear with Cu Sputtered Fabrics.” Proc. Human-Computer Interaction. Interaction Platforms and Techniques, Berlin, 2007 Jang, S, Cho, J, Jeong, K, Cho, G, “Exploring Possibilities of ECG Electrodes for Bio-monitoring Smartwear with Cu Sputtered Fabrics.” Proc. Human-Computer Interaction. Interaction Platforms and Techniques, Berlin, 2007
169.
go back to reference Huang, T, Yang, S, He, P, Sun, J, Zhang, S, Li, D, Meng, Y, Zhou, J, Tang, H, Liang, J, Ding, G, Xie, X, “Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors.” ACS Appl. Mater. Interfaces, 10 (36) 30732–30740 (2018)CrossRef Huang, T, Yang, S, He, P, Sun, J, Zhang, S, Li, D, Meng, Y, Zhou, J, Tang, H, Liang, J, Ding, G, Xie, X, “Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors.” ACS Appl. Mater. Interfaces, 10 (36) 30732–30740 (2018)CrossRef
170.
go back to reference Ntim, CK, Ocran, SP, Acquaye, R, “Digital Textile Printing: A New Alternative to Short-Run Textile Printing in Ghana.” Int. J. Technol. Manag. Res., 2 (1) 60–65 (2020)CrossRef Ntim, CK, Ocran, SP, Acquaye, R, “Digital Textile Printing: A New Alternative to Short-Run Textile Printing in Ghana.” Int. J. Technol. Manag. Res., 2 (1) 60–65 (2020)CrossRef
171.
go back to reference Tawiah, B, Kofi Howard, E, Asinyo, B, "The Chemistry of Inkjet Inks for Digital Textile Printing -Review." 4 2016 (2019) Tawiah, B, Kofi Howard, E, Asinyo, B, "The Chemistry of Inkjet Inks for Digital Textile Printing -Review." 4 2016 (2019)
172.
go back to reference Hart, JP, Wring, SA, “Screen-Printed Voltammetric and Amperometric Electrochemical Sensors for Decentralized Testing.” Anal. Chem., 6 (8) 617–624 (1994) Hart, JP, Wring, SA, “Screen-Printed Voltammetric and Amperometric Electrochemical Sensors for Decentralized Testing.” Anal. Chem., 6 (8) 617–624 (1994)
173.
go back to reference Guo, Y, Otley, MT, Li, M, Zhang, X, Sinha, SK, Treich, GM, Sotzing, GA, “PEDOT:PSS ‘Wires’ Printed on Textile for Wearable Electronics.” ACS Appl. Mater. Interfaces, 8 (40) 26998–27005 (2016)CrossRef Guo, Y, Otley, MT, Li, M, Zhang, X, Sinha, SK, Treich, GM, Sotzing, GA, “PEDOT:PSS ‘Wires’ Printed on Textile for Wearable Electronics.” ACS Appl. Mater. Interfaces, 8 (40) 26998–27005 (2016)CrossRef
174.
go back to reference Hu, B, Li, D, Ala, O, Manandhar, P, Fan, Q, Kasilingam, D, Calvert, PD, “Textile-Based Flexible Electroluminescent Devices.” Adv. Funct. Mater., 21 (2) 305–311 (2011)CrossRef Hu, B, Li, D, Ala, O, Manandhar, P, Fan, Q, Kasilingam, D, Calvert, PD, “Textile-Based Flexible Electroluminescent Devices.” Adv. Funct. Mater., 21 (2) 305–311 (2011)CrossRef
175.
go back to reference Skrzetuska, E, Puchalski, M, Krucińska, I, “Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes.” Sensors (Basel), 14 (9) 16816–16828 (2014)CrossRef Skrzetuska, E, Puchalski, M, Krucińska, I, “Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes.” Sensors (Basel), 14 (9) 16816–16828 (2014)CrossRef
176.
go back to reference Karim, N, Afroj, S, Malandraki, A, Butterworth, S, Beach, C, Rigout, M, Novoselov, KS, Casson, AJ, Yeates, SG, “All Inkjet-Printed Graphene-Based Conductive Patterns for Wearable E-Textile Applications.” J. Mater. Chem. C, 5 (44) 11640–11648 (2017)CrossRef Karim, N, Afroj, S, Malandraki, A, Butterworth, S, Beach, C, Rigout, M, Novoselov, KS, Casson, AJ, Yeates, SG, “All Inkjet-Printed Graphene-Based Conductive Patterns for Wearable E-Textile Applications.” J. Mater. Chem. C, 5 (44) 11640–11648 (2017)CrossRef
177.
go back to reference Karim, N, Afroj, S, Tan, S, Novoselov, KS, Yeates, SG, “All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.” Sci. Rep., 9 (1) 8035 (2019)CrossRef Karim, N, Afroj, S, Tan, S, Novoselov, KS, Yeates, SG, “All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.” Sci. Rep., 9 (1) 8035 (2019)CrossRef
178.
go back to reference Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)CrossRef Emamian, S, Narakathu, BB, Chlaihawi, AA, Bazuin, BJ, Atashbar, MZ, “Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications.” Sens. Actuators A Phys., 263 639–647 (2017)CrossRef
179.
go back to reference Kazani, I, Hertleer, C, Mey, G, Schwarz-Pfeiffer, A, Guxho, G, Van Langenhove, L, "Electrical Conductive Textiles Obtained by Screen Printing." Fibres Text. East. Eur., 20 (2012) Kazani, I, Hertleer, C, Mey, G, Schwarz-Pfeiffer, A, Guxho, G, Van Langenhove, L, "Electrical Conductive Textiles Obtained by Screen Printing." Fibres Text. East. Eur., 20 (2012)
180.
go back to reference Jost, K, Stenger, D, Perez, CR, McDonough, JK, Lian, K, Gogotsi, Y, Dion, G, “Knitted and Screen Printed Carbon-Fiber Supercapacitors for Applications in Wearable Electronics.” Energy Environ. Sci., 6 (9) 2698–2705 (2013)CrossRef Jost, K, Stenger, D, Perez, CR, McDonough, JK, Lian, K, Gogotsi, Y, Dion, G, “Knitted and Screen Printed Carbon-Fiber Supercapacitors for Applications in Wearable Electronics.” Energy Environ. Sci., 6 (9) 2698–2705 (2013)CrossRef
181.
go back to reference Eshkeiti, A, Avuthu, SGR, Emamian, S, Narakathu, B, Joyce, M, Joyce, M, Fleming, PD, Bazuin, BJ, Atashbar, M, “Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates.” Compon. Pack. Manuf. Technol. IEEE Trans., 5 415–421 (2015)CrossRef Eshkeiti, A, Avuthu, SGR, Emamian, S, Narakathu, B, Joyce, M, Joyce, M, Fleming, PD, Bazuin, BJ, Atashbar, M, “Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates.” Compon. Pack. Manuf. Technol. IEEE Trans., 5 415–421 (2015)CrossRef
182.
go back to reference Khan, S, Lorenzelli, L, Dahiya, RS, “Screen Printed Flexible Pressure Sensors Skin.” Proc. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 19–21 May 2014, 2014 Khan, S, Lorenzelli, L, Dahiya, RS, “Screen Printed Flexible Pressure Sensors Skin.” Proc. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 19–21 May 2014, 2014
183.
go back to reference Wang, YR, Zheng, JM, Ren, GY, Zhang, PH, Xu, C, “A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics.” Smart Mater. Struct., 20 (4) 045009 (2011)CrossRef Wang, YR, Zheng, JM, Ren, GY, Zhang, PH, Xu, C, “A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics.” Smart Mater. Struct., 20 (4) 045009 (2011)CrossRef
184.
go back to reference Cheng, J, Amft, O, Lukowicz, P, “Active Capacitive Sensing: Exploring a New Wearable Sensing Modality for Activity Recognition.” Proc. Berlin, 2010 Cheng, J, Amft, O, Lukowicz, P, “Active Capacitive Sensing: Exploring a New Wearable Sensing Modality for Activity Recognition.” Proc. Berlin, 2010
185.
go back to reference Allison, L, Hoxie, S, Andrew, TL, “Towards Seamlessly-Integrated Textile Electronics: Methods to Coat Fabrics and Fibers With Conducting Polymers for Electronic Applications.” Chem. Commun., 53 (53) 7182–7193 (2017)CrossRef Allison, L, Hoxie, S, Andrew, TL, “Towards Seamlessly-Integrated Textile Electronics: Methods to Coat Fabrics and Fibers With Conducting Polymers for Electronic Applications.” Chem. Commun., 53 (53) 7182–7193 (2017)CrossRef
186.
go back to reference Zhang, T, Liao, Z, Sandonas, LM, Dianat, A, Liu, X, Xiao, P, Amin, I, Gutierrez, R, Chen, T, Zschech, E, Cuniberti, G, Jordan, R, “Polymerization Driven Monomer Passage Through Monolayer Chemical Vapour Deposition Graphene.” Nat. Commun., 9 (1) 4051 (2018)CrossRef Zhang, T, Liao, Z, Sandonas, LM, Dianat, A, Liu, X, Xiao, P, Amin, I, Gutierrez, R, Chen, T, Zschech, E, Cuniberti, G, Jordan, R, “Polymerization Driven Monomer Passage Through Monolayer Chemical Vapour Deposition Graphene.” Nat. Commun., 9 (1) 4051 (2018)CrossRef
187.
go back to reference Trindade, IG, Martins, F, Baptista, P, “High Electrical Conductance poly(3,4-Ethylenedioxythiophene) Coatings on Textile for Electrocardiogram Monitoring.” Synth. Metals, 210 179–185 (2015)CrossRef Trindade, IG, Martins, F, Baptista, P, “High Electrical Conductance poly(3,4-Ethylenedioxythiophene) Coatings on Textile for Electrocardiogram Monitoring.” Synth. Metals, 210 179–185 (2015)CrossRef
188.
go back to reference Kim, MS, Kim, HK, Byun, SW, Jeong, SH, Hong, YK, Joo, JS, Song, KT, Kim, JK, Lee, CJ, Lee, JY, “PET Fabric/Polypyrrole Composite with High Electrical Conductivity for EMI Shielding.” Synth. Metals, 126 (2) 233–239 (2002)CrossRef Kim, MS, Kim, HK, Byun, SW, Jeong, SH, Hong, YK, Joo, JS, Song, KT, Kim, JK, Lee, CJ, Lee, JY, “PET Fabric/Polypyrrole Composite with High Electrical Conductivity for EMI Shielding.” Synth. Metals, 126 (2) 233–239 (2002)CrossRef
189.
go back to reference Zhou, Y, Ding, X, Zhang, J, Duan, Y, Hu, J, Yang, X, “Fabrication of Conductive Fabric as Textile Electrode for ECG Monitoring.” Fibers Polym., 15 (11) 2260–2264 (2014)CrossRef Zhou, Y, Ding, X, Zhang, J, Duan, Y, Hu, J, Yang, X, “Fabrication of Conductive Fabric as Textile Electrode for ECG Monitoring.” Fibers Polym., 15 (11) 2260–2264 (2014)CrossRef
190.
go back to reference Mattox, DM, Handbook of Physical Vapor Deposition (PVD) Processing. Norwich, (2010) Mattox, DM, Handbook of Physical Vapor Deposition (PVD) Processing. Norwich, (2010)
191.
go back to reference Pawlak, R, Korzeniewska, E, Koneczny, C, Hałgas, B, “Properties of Thin Metal Layers Deposited on Textile Composites by Using the PVD Method For Textronic Applications.” Autex Res. J., 17 (3) 229–237 (2017)CrossRef Pawlak, R, Korzeniewska, E, Koneczny, C, Hałgas, B, “Properties of Thin Metal Layers Deposited on Textile Composites by Using the PVD Method For Textronic Applications.” Autex Res. J., 17 (3) 229–237 (2017)CrossRef
192.
go back to reference Silva, NL, Gonçalves, L, Carvalho, H, “Deposition of Conductive Materials on Textile and Polymeric Flexible Substrates.” J. Mater. Sci. Mater. Electron., 24 (2) 635–643 (2013)CrossRef Silva, NL, Gonçalves, L, Carvalho, H, “Deposition of Conductive Materials on Textile and Polymeric Flexible Substrates.” J. Mater. Sci. Mater. Electron., 24 (2) 635–643 (2013)CrossRef
193.
go back to reference Keller, M, Ritter, A, Reimann, P, Thommen, V, Fischer, A, Hegemann, D, “Comparative Study of Plasma-Induced and Wet-Chemical Cleaning of Synthetic Fibers.” Surf. Coat. Technol., 200 (1–4) 1045–1050 (2005)CrossRef Keller, M, Ritter, A, Reimann, P, Thommen, V, Fischer, A, Hegemann, D, “Comparative Study of Plasma-Induced and Wet-Chemical Cleaning of Synthetic Fibers.” Surf. Coat. Technol., 200 (1–4) 1045–1050 (2005)CrossRef
194.
go back to reference Cho, G, Jeong, K, Paik, MJ, Kwun, Y, Sung, M, “Performance Evaluation of Textile-Based Electrodes and Motion Sensors for Smart Clothing.” IEEE Sens. J., 11 (12) 3183–3193 (2011)CrossRef Cho, G, Jeong, K, Paik, MJ, Kwun, Y, Sung, M, “Performance Evaluation of Textile-Based Electrodes and Motion Sensors for Smart Clothing.” IEEE Sens. J., 11 (12) 3183–3193 (2011)CrossRef
195.
go back to reference Aleksandrova, M, Tsanev, T, Pandiev, I, Dobrikov, G, “Study of Piezoelectric Behaviour of Sputtered KNbO3 Nanocoatings for Flexible Energy Harvesting.” Energy, 205 118068 (2020)CrossRef Aleksandrova, M, Tsanev, T, Pandiev, I, Dobrikov, G, “Study of Piezoelectric Behaviour of Sputtered KNbO3 Nanocoatings for Flexible Energy Harvesting.” Energy, 205 118068 (2020)CrossRef
196.
go back to reference Martinez, JG, Richter, K, Persson, N-K, Jager, EW, “Investigation of Electrically Conducting Yarns for Use in Textile Actuators.” Smart Mater. Struct., 27 (7) 074004 (2018)CrossRef Martinez, JG, Richter, K, Persson, N-K, Jager, EW, “Investigation of Electrically Conducting Yarns for Use in Textile Actuators.” Smart Mater. Struct., 27 (7) 074004 (2018)CrossRef
197.
go back to reference Deng, Z, Dapino, MJ, “Review of Magnetostrictive Vibration Energy Harvesters.” Smart Mater. Struct., 26 (10) 103001 (2017)CrossRef Deng, Z, Dapino, MJ, “Review of Magnetostrictive Vibration Energy Harvesters.” Smart Mater. Struct., 26 (10) 103001 (2017)CrossRef
198.
go back to reference Yang, K, Torah, R, Wei, Y, Beeby, S, Tudor, J, “Waterproof and Durable Screen Printed Silver Conductive Tracks on Textiles.” Text. Res. J., 83 (19) 2023–2031 (2013)CrossRef Yang, K, Torah, R, Wei, Y, Beeby, S, Tudor, J, “Waterproof and Durable Screen Printed Silver Conductive Tracks on Textiles.” Text. Res. J., 83 (19) 2023–2031 (2013)CrossRef
199.
go back to reference Park, S, Mackenzie, K, Jayaraman, S, “The Wearable Motherboard: A Framework for Personalized Mobile Information Processing (PMIP).” Proc. Proceedings of the 39th Annual Design Automation Conference, 2002 Park, S, Mackenzie, K, Jayaraman, S, “The Wearable Motherboard: A Framework for Personalized Mobile Information Processing (PMIP).” Proc. Proceedings of the 39th Annual Design Automation Conference, 2002
200.
go back to reference Meoli, D, May-Plumlee, TJ, “Interactive Electronic Textile Development: A Review of Technol.ogies.” J. Text. Apparel, Technol. Manag., 2 (2) 1–12 (2002) Meoli, D, May-Plumlee, TJ, “Interactive Electronic Textile Development: A Review of Technol.ogies.” J. Text. Apparel, Technol. Manag., 2 (2) 1–12 (2002)
201.
go back to reference Custodio, V, Herrera, FJ, López, G, Moreno, JI, “A Review on Architectures and Communications Technol.ogies for Wearable Health-Monitoring Systems.” Sensors (Basel)., 12 (10) 13907–13946 (2012)CrossRef Custodio, V, Herrera, FJ, López, G, Moreno, JI, “A Review on Architectures and Communications Technol.ogies for Wearable Health-Monitoring Systems.” Sensors (Basel)., 12 (10) 13907–13946 (2012)CrossRef
202.
go back to reference Yang, Y-L, Chuang, M-C, Lou, S-L, Wang, J, “Thick-Film Textile-Based Amperometric Sensors and Biosensors.” Analyst, 135 (6) 1230–1234 (2010)CrossRef Yang, Y-L, Chuang, M-C, Lou, S-L, Wang, J, “Thick-Film Textile-Based Amperometric Sensors and Biosensors.” Analyst, 135 (6) 1230–1234 (2010)CrossRef
203.
go back to reference Cheng, Y, Wang, R, Sun, J, Gao, L, “A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion.” Adv. Mater., 27 (45) 7365–7371 (2015)CrossRef Cheng, Y, Wang, R, Sun, J, Gao, L, “A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion.” Adv. Mater., 27 (45) 7365–7371 (2015)CrossRef
204.
go back to reference Jeong, K, Kim, DH, Chung, YS, Hwang, SK, Hwang, HY, Kim, SS, “Effect of Processing Parameters of the Continuous Wet Spinning System on the Crystal Phase of PVDF Fibers.” J. Appl. Polym. Sci., 135 (3) 45712 (2018)CrossRef Jeong, K, Kim, DH, Chung, YS, Hwang, SK, Hwang, HY, Kim, SS, “Effect of Processing Parameters of the Continuous Wet Spinning System on the Crystal Phase of PVDF Fibers.” J. Appl. Polym. Sci., 135 (3) 45712 (2018)CrossRef
205.
go back to reference Egusa, S, Wang, Z, Chocat, N, Ruff, Z, Stolyarov, A, Shemuly, D, Sorin, F, Rakich, P, Joannopoulos, J, Fink, Y, “Multimaterial Piezoelectric Fibres.” Nat. Mater., 9 (8) 643–648 (2010)CrossRef Egusa, S, Wang, Z, Chocat, N, Ruff, Z, Stolyarov, A, Shemuly, D, Sorin, F, Rakich, P, Joannopoulos, J, Fink, Y, “Multimaterial Piezoelectric Fibres.” Nat. Mater., 9 (8) 643–648 (2010)CrossRef
206.
go back to reference Kirstein, T, The Future of Smart-Textiles Development: New Enabling Technol.ogies, Commercialization and Market Trends. Multidisciplinary Know-How for Smart-Textiles Developers, pp. 1–25. Elsevier (2013) Kirstein, T, The Future of Smart-Textiles Development: New Enabling Technol.ogies, Commercialization and Market Trends. Multidisciplinary Know-How for Smart-Textiles Developers, pp. 1–25. Elsevier (2013)
207.
go back to reference Walter, S, Steinmann, W, Schütte, J, Seide, G, Gries, T, Roth, G, Wierach, P, Sinapius, M, “Characterisation of Piezoelectric PVDF Monofilaments.” Mater. Technol., 26 (3) 140–145 (2011)CrossRef Walter, S, Steinmann, W, Schütte, J, Seide, G, Gries, T, Roth, G, Wierach, P, Sinapius, M, “Characterisation of Piezoelectric PVDF Monofilaments.” Mater. Technol., 26 (3) 140–145 (2011)CrossRef
208.
go back to reference Sato, H, “Application of Metal Core Piezoelectric Complex Fiber.” Proc. Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 2006 Sato, H, “Application of Metal Core Piezoelectric Complex Fiber.” Proc. Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 2006
209.
go back to reference Zhang, Y, Piezoelectric Paint Sensors for Ultrasonics‐based Damage Detection. Encycl. Struct. Health Monit. (2009) Zhang, Y, Piezoelectric Paint Sensors for Ultrasonics‐based Damage Detection. Encycl. Struct. Health Monit. (2009)
210.
go back to reference Xin, Y, Sun, H, Tian, H, Guo, C, Li, X, Wang, S, Wang, C, “The Use of Polyvinylidene Fluoride (PVDF) Films as Sensors for Vibration Measurement: A Brief Review.” Ferroelectrics, 502 (1) 28–42 (2016)CrossRef Xin, Y, Sun, H, Tian, H, Guo, C, Li, X, Wang, S, Wang, C, “The Use of Polyvinylidene Fluoride (PVDF) Films as Sensors for Vibration Measurement: A Brief Review.” Ferroelectrics, 502 (1) 28–42 (2016)CrossRef
211.
go back to reference Chiu, Y-Y, Lin, W-Y, Wang, H-Y, Huang, S-B, Wu, M-H, “Development of a Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Sensor Patch for Simultaneous Heartbeat and Respiration Monitoring.” Sens. Actuators A Phys., 189 328–334 (2013)CrossRef Chiu, Y-Y, Lin, W-Y, Wang, H-Y, Huang, S-B, Wu, M-H, “Development of a Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Sensor Patch for Simultaneous Heartbeat and Respiration Monitoring.” Sens. Actuators A Phys., 189 328–334 (2013)CrossRef
212.
go back to reference Chen, Y, Wang, L, Ko, WH, “A Piezopolymer Finger Pulse and Breathing Wave Sensor.” Sens. Actuators A Phys., 23 (1–3) 879–882 (1990)CrossRef Chen, Y, Wang, L, Ko, WH, “A Piezopolymer Finger Pulse and Breathing Wave Sensor.” Sens. Actuators A Phys., 23 (1–3) 879–882 (1990)CrossRef
213.
go back to reference Choi, S, Jiang, Z, “A Novel Wearable Sensor Device with Conductive Fabric and PVDF Film for Monitoring Cardiorespiratory Signals.” Sens. Actuators A Phys., 128 (2) 317–326 (2006)CrossRef Choi, S, Jiang, Z, “A Novel Wearable Sensor Device with Conductive Fabric and PVDF Film for Monitoring Cardiorespiratory Signals.” Sens. Actuators A Phys., 128 (2) 317–326 (2006)CrossRef
214.
go back to reference Sharma, T, Je, S-S, Gill, B, Zhang, J, “Patterning Piezoelectric Thin Film PVDF–TrFE Based Pressure Sensor for Catheter Application.” Sens. Actuators A Phys., 177 87–92 (2012)CrossRef Sharma, T, Je, S-S, Gill, B, Zhang, J, “Patterning Piezoelectric Thin Film PVDF–TrFE Based Pressure Sensor for Catheter Application.” Sens. Actuators A Phys., 177 87–92 (2012)CrossRef
215.
go back to reference Song, F, Wang, H, Sun, J, Gao, H, Wu, S, Yang, M, Ma, X, Hao, Y, “ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein.” IEEE Electron. Dev. Lett., 39 (1) 31–34 (2017)CrossRef Song, F, Wang, H, Sun, J, Gao, H, Wu, S, Yang, M, Ma, X, Hao, Y, “ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein.” IEEE Electron. Dev. Lett., 39 (1) 31–34 (2017)CrossRef
216.
go back to reference Dagdeviren, C, Hwang, SW, Su, Y, Kim, S, Cheng, H, Gur, O, Haney, R, Omenetto, FG, Huang, Y, Rogers, JA, “Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO.” Small, 9 (20) 3398–3404 (2013)CrossRef Dagdeviren, C, Hwang, SW, Su, Y, Kim, S, Cheng, H, Gur, O, Haney, R, Omenetto, FG, Huang, Y, Rogers, JA, “Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO.” Small, 9 (20) 3398–3404 (2013)CrossRef
217.
go back to reference Yan, C, Cheng, XB, Tian, Y, Chen, X, Zhang, XQ, Li, WJ, Huang, JQ, Zhang, Q, “Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition.” Adv. Mater., 30 (25) 1707629 (2018)CrossRef Yan, C, Cheng, XB, Tian, Y, Chen, X, Zhang, XQ, Li, WJ, Huang, JQ, Zhang, Q, “Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition.” Adv. Mater., 30 (25) 1707629 (2018)CrossRef
218.
go back to reference Atalay, A, Atalay, O, Husain, MD, Fernando, A, Potluri, P, “Piezofilm Yarn Sensor-Integrated Knitted Fabric for Healthcare Applications.” J Indust Text., 47 (4) 505–521 (2017)CrossRef Atalay, A, Atalay, O, Husain, MD, Fernando, A, Potluri, P, “Piezofilm Yarn Sensor-Integrated Knitted Fabric for Healthcare Applications.” J Indust Text., 47 (4) 505–521 (2017)CrossRef
219.
go back to reference Erdem, HE, Gungor, VC, “On the Lifetime Analysis of Energy Harvesting Sensor Nodes in Smart Grid Environments.” Ad Hoc Netw., 75 98–105 (2018)CrossRef Erdem, HE, Gungor, VC, “On the Lifetime Analysis of Energy Harvesting Sensor Nodes in Smart Grid Environments.” Ad Hoc Netw., 75 98–105 (2018)CrossRef
220.
go back to reference Abbasi, A, “Application of Piezoelectric Materials in Smart Roads and MEMS, PMPG Power Generation with Transverse Mode Thin Film PZT.” Int. J. Electric. Comput. Eng., 3 (6) 857–862 (2013) Abbasi, A, “Application of Piezoelectric Materials in Smart Roads and MEMS, PMPG Power Generation with Transverse Mode Thin Film PZT.” Int. J. Electric. Comput. Eng., 3 (6) 857–862 (2013)
221.
go back to reference Wang, ZL, “Towards Self-powered Nanosystems: From Nanogenerators to Nanopiezotronics.” Adv. Funct. Mater., 18 (22) 3553–3567 (2008)CrossRef Wang, ZL, “Towards Self-powered Nanosystems: From Nanogenerators to Nanopiezotronics.” Adv. Funct. Mater., 18 (22) 3553–3567 (2008)CrossRef
222.
go back to reference Fu, H, Yeatman, EM, “A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion.” Energy, 125 152–161 (2017)CrossRef Fu, H, Yeatman, EM, “A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion.” Energy, 125 152–161 (2017)CrossRef
223.
go back to reference Kymissis, J, Kendall, C, Paradiso, J, Gershenfeld, N, “Parasitic Power Harvesting in Shoes.” Proc. Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), 1998 Kymissis, J, Kendall, C, Paradiso, J, Gershenfeld, N, “Parasitic Power Harvesting in Shoes.” Proc. Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), 1998
224.
go back to reference Shenck, N, Paradiso, J, “Energy Scavenging with Shoe-Mounted Piezoelectrics.” IEEE Micro, 21 30–42 (2001)CrossRef Shenck, N, Paradiso, J, “Energy Scavenging with Shoe-Mounted Piezoelectrics.” IEEE Micro, 21 30–42 (2001)CrossRef
225.
go back to reference Maluf, N, Williams, K, An Introduction to Microelectromechanical Systems Engineering. Artech House, Norwood (2004) Maluf, N, Williams, K, An Introduction to Microelectromechanical Systems Engineering. Artech House, Norwood (2004)
226.
go back to reference Lee, E, Park, J, Yim, M, Kim, Y, Yoon, G, “Characteristics of Piezoelectric ZnO/AlN− Stacked Flexible Nanogenerators for Energy Harvesting Applications.” Appl. Phys. Lett., 106 (2) 023901 (2015)CrossRef Lee, E, Park, J, Yim, M, Kim, Y, Yoon, G, “Characteristics of Piezoelectric ZnO/AlN− Stacked Flexible Nanogenerators for Energy Harvesting Applications.” Appl. Phys. Lett., 106 (2) 023901 (2015)CrossRef
227.
go back to reference He, S, Dong, W, Guo, Y, Guan, L, Xiao, H, Liu, H, “Piezoelectric Thin Film on Glass Fiber Fabric with Structural Hierarchy: An Approach to High-Performance, Superflexible, Cost-Effective, and Large-Scale Nanogenerators.” Nano Energy, 59 745–753 (2019)CrossRef He, S, Dong, W, Guo, Y, Guan, L, Xiao, H, Liu, H, “Piezoelectric Thin Film on Glass Fiber Fabric with Structural Hierarchy: An Approach to High-Performance, Superflexible, Cost-Effective, and Large-Scale Nanogenerators.” Nano Energy, 59 745–753 (2019)CrossRef
228.
go back to reference Qin, Y, Wang, X, Wang, ZL, “Microfibre–Nanowire Hybrid Structure for Energy Scavenging.” Nature, 451 (7180) 809–813 (2008)CrossRef Qin, Y, Wang, X, Wang, ZL, “Microfibre–Nanowire Hybrid Structure for Energy Scavenging.” Nature, 451 (7180) 809–813 (2008)CrossRef
229.
go back to reference Ren, J, Xu, Q, Li, Y-G, “Flexible Fiber-Shaped Energy Storage Devices: Principles, Progress, Applications and Challenges.” Flexible Printed Electron, 3 (1) 013001 (2018)CrossRef Ren, J, Xu, Q, Li, Y-G, “Flexible Fiber-Shaped Energy Storage Devices: Principles, Progress, Applications and Challenges.” Flexible Printed Electron, 3 (1) 013001 (2018)CrossRef
230.
go back to reference Prashanthi, K, Miriyala, N, Gaikwad, R, Moussa, W, Rao, VR, Thundat, T, “Vibtrational Energy Harvesting Using Photo-Patternable Piezoelectric Nanocomposite Cantilevers.” Nano Energy, 2 (5) 923–932 (2013)CrossRef Prashanthi, K, Miriyala, N, Gaikwad, R, Moussa, W, Rao, VR, Thundat, T, “Vibtrational Energy Harvesting Using Photo-Patternable Piezoelectric Nanocomposite Cantilevers.” Nano Energy, 2 (5) 923–932 (2013)CrossRef
231.
go back to reference Bhimasankaram, T, Suryanarayana, S, Prasad, G, “Piezoelectric Polymer Composite Materials.” Curr. Sci., 74 967–976 (1998) Bhimasankaram, T, Suryanarayana, S, Prasad, G, “Piezoelectric Polymer Composite Materials.” Curr. Sci., 74 967–976 (1998)
232.
go back to reference Sancaktar, E, Bai, L, “Electrically Conductive Epoxy Adhesives.” Polymers, 3 (1) 427–466 (2011)CrossRef Sancaktar, E, Bai, L, “Electrically Conductive Epoxy Adhesives.” Polymers, 3 (1) 427–466 (2011)CrossRef
233.
go back to reference Fu, S, Tao, J, Wu, W, Sun, J, Li, F, Li, J, Huo, Z, Xia, Z, Bao, R, Pan, C, “Fabrication of Large-Area Bimodal Sensors by All-Inkjet-Printing.” Adv. Mater. Technol., 4 (4) 1800703 (2019)CrossRef Fu, S, Tao, J, Wu, W, Sun, J, Li, F, Li, J, Huo, Z, Xia, Z, Bao, R, Pan, C, “Fabrication of Large-Area Bimodal Sensors by All-Inkjet-Printing.” Adv. Mater. Technol., 4 (4) 1800703 (2019)CrossRef
234.
go back to reference Laforgue, A, “All-Textile Flexible Supercapacitors Using Electrospun Poly (3, 4-Ethylenedioxythiophene) Nanofibers.” J. Power Sources, 196 (1) 559–564 (2011)CrossRef Laforgue, A, “All-Textile Flexible Supercapacitors Using Electrospun Poly (3, 4-Ethylenedioxythiophene) Nanofibers.” J. Power Sources, 196 (1) 559–564 (2011)CrossRef
235.
go back to reference Sundriyal, P, Bhattacharya, S, “Textile-Based Supercapacitors for Flexible and Wearable Electronic Applications.” Sci. Rep., 10 (1) 1–15 (2020)CrossRef Sundriyal, P, Bhattacharya, S, “Textile-Based Supercapacitors for Flexible and Wearable Electronic Applications.” Sci. Rep., 10 (1) 1–15 (2020)CrossRef
236.
go back to reference Yong, S, Owen, J, Beeby, S, “Solid-State Supercapacitor Fabricated in a Single Woven Textile Layer for E-Textiles Applications.” Adv. Eng. Mater., 20 (5) 1700860 (2018)CrossRef Yong, S, Owen, J, Beeby, S, “Solid-State Supercapacitor Fabricated in a Single Woven Textile Layer for E-Textiles Applications.” Adv. Eng. Mater., 20 (5) 1700860 (2018)CrossRef
237.
go back to reference Wang, S, Shen, J, Wang, Q, Fan, Y, Li, L, Zhang, K, Yang, L, Zhang, W, Wang, X, “High-Performance Layer-by-Layer Self-Assembly PANI/GQD-rGO/CFC Electrodes for a Flexible Solid-State Supercapacitor by a Facile Spraying Technique.” ACS Appl. Energy Mater., 2 (2) 1077–1085 (2019)CrossRef Wang, S, Shen, J, Wang, Q, Fan, Y, Li, L, Zhang, K, Yang, L, Zhang, W, Wang, X, “High-Performance Layer-by-Layer Self-Assembly PANI/GQD-rGO/CFC Electrodes for a Flexible Solid-State Supercapacitor by a Facile Spraying Technique.” ACS Appl. Energy Mater., 2 (2) 1077–1085 (2019)CrossRef
238.
go back to reference Song, P, He, X, Xie, M, Tao, J, Shen, X, Ji, Z, Yan, Z, Zhai, L, Yuan, A, “Polyaniline Wrapped Graphene Functionalized Textile with Ultrahigh Areal Capacitance and Energy Density for High-Performance All-Solid-State Supercapacitors for Wearable Electronics.” Compos. Sci. Technol., 198 108305 (2020)CrossRef Song, P, He, X, Xie, M, Tao, J, Shen, X, Ji, Z, Yan, Z, Zhai, L, Yuan, A, “Polyaniline Wrapped Graphene Functionalized Textile with Ultrahigh Areal Capacitance and Energy Density for High-Performance All-Solid-State Supercapacitors for Wearable Electronics.” Compos. Sci. Technol., 198 108305 (2020)CrossRef
239.
go back to reference Zhou, D, Wang, N, Yang, T, Wang, L, Cao, X, Wang, ZL, “A Piezoelectric Nanogenerator Promotes Highly Stretchable and Self-chargeable Supercapacitors.” Mater. Horiz., 7 (8) 2158–2167 (2020)CrossRef Zhou, D, Wang, N, Yang, T, Wang, L, Cao, X, Wang, ZL, “A Piezoelectric Nanogenerator Promotes Highly Stretchable and Self-chargeable Supercapacitors.” Mater. Horiz., 7 (8) 2158–2167 (2020)CrossRef
240.
go back to reference Rafique, S, Kasi, AK, Kasi, JK, Aminullah, R, Bokhari, M, Shakoor, Z, “Fabrication of Silver-Doped Zinc Oxide Nanorods Piezoelectric Nanogenerator on Cotton Fabric to Utilize and Optimize the Charging System.” Nanomater. Nanotechnol., 10 184798041989574 (2020)CrossRef Rafique, S, Kasi, AK, Kasi, JK, Aminullah, R, Bokhari, M, Shakoor, Z, “Fabrication of Silver-Doped Zinc Oxide Nanorods Piezoelectric Nanogenerator on Cotton Fabric to Utilize and Optimize the Charging System.” Nanomater. Nanotechnol., 10 184798041989574 (2020)CrossRef
241.
go back to reference Kim, M, Wu, YS, Kan, EC, Fan, J, “Breathable and Flexible Piezoelectric ZnO@ PVDF Fibrous Nanogenerator for Wearable Applications.” Polymers (Basel), 10 (7) 745 (2018)CrossRef Kim, M, Wu, YS, Kan, EC, Fan, J, “Breathable and Flexible Piezoelectric ZnO@ PVDF Fibrous Nanogenerator for Wearable Applications.” Polymers (Basel), 10 (7) 745 (2018)CrossRef
242.
go back to reference Krajewski, AS, Magniez, K, Helmer, RJ, Schrank, V, “Piezoelectric Force Response of Novel 2D Textile Based PVDF Sensors.” IEEE Sens. J., 13 (12) 4743–4748 (2013)CrossRef Krajewski, AS, Magniez, K, Helmer, RJ, Schrank, V, “Piezoelectric Force Response of Novel 2D Textile Based PVDF Sensors.” IEEE Sens. J., 13 (12) 4743–4748 (2013)CrossRef
243.
go back to reference Fang, J, Wang, X, Lin, T, “Electrical Power Generator from Randomly Oriented Electrospun Poly (Vinylidene Fluoride) Nanofibre Membranes.” J. Mater. Chem., 21 (30) 11088–11091 (2011)CrossRef Fang, J, Wang, X, Lin, T, “Electrical Power Generator from Randomly Oriented Electrospun Poly (Vinylidene Fluoride) Nanofibre Membranes.” J. Mater. Chem., 21 (30) 11088–11091 (2011)CrossRef
244.
go back to reference Åkerfeldt, M, Lund, A, Walkenström, P, “Textile Sensing Glove with Piezoelectric PVDF Fibers and Printed Electrodes of PEDOT PSS.” Text. Res. J., 85 (17) 1789–1799 (2015)CrossRef Åkerfeldt, M, Lund, A, Walkenström, P, “Textile Sensing Glove with Piezoelectric PVDF Fibers and Printed Electrodes of PEDOT PSS.” Text. Res. J., 85 (17) 1789–1799 (2015)CrossRef
245.
go back to reference Kim, K, Yun, K-S, “Stretchable Power-Generating Sensor Array in Textile Structure Using Piezoelectric Functional Threads with Hemispherical Dome Structures.” Int. J. Precis Eng. Manuf.-Green Technol., 6 (4) 699–710 (2019)CrossRef Kim, K, Yun, K-S, “Stretchable Power-Generating Sensor Array in Textile Structure Using Piezoelectric Functional Threads with Hemispherical Dome Structures.” Int. J. Precis Eng. Manuf.-Green Technol., 6 (4) 699–710 (2019)CrossRef
246.
go back to reference Chakhchaoui, N, Jaouani, H, Ennamiri, H, Eddiai, A, Hajjaji, A, Meddad, M, Van Langenhove, L, Boughaleb, Y, “Modeling and Analysis of the Effect of Substrate on the Flexible Piezoelectric Films for Kinetic Energy Harvesting from Textiles.” J. Compos. Mater., 53 (24) 3349–3361 (2019)CrossRef Chakhchaoui, N, Jaouani, H, Ennamiri, H, Eddiai, A, Hajjaji, A, Meddad, M, Van Langenhove, L, Boughaleb, Y, “Modeling and Analysis of the Effect of Substrate on the Flexible Piezoelectric Films for Kinetic Energy Harvesting from Textiles.” J. Compos. Mater., 53 (24) 3349–3361 (2019)CrossRef
247.
go back to reference Ponnamma, D, Parangusan, H, Tanvir, A, AlMa’adeed, MAA, “Smart and Robust Electrospun Fabrics of Piezoelectric Polymer Nanocomposite for Self-powering Electronic Textiles.” Mater. Des., 184 108176 (2019)CrossRef Ponnamma, D, Parangusan, H, Tanvir, A, AlMa’adeed, MAA, “Smart and Robust Electrospun Fabrics of Piezoelectric Polymer Nanocomposite for Self-powering Electronic Textiles.” Mater. Des., 184 108176 (2019)CrossRef
248.
go back to reference Wu, W, Bai, S, Yuan, M, Qin, Y, Wang, ZL, Jing, T, “Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-powered Devices.” ACS Nano, 6 (7) 6231–6235 (2012)CrossRef Wu, W, Bai, S, Yuan, M, Qin, Y, Wang, ZL, Jing, T, “Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-powered Devices.” ACS Nano, 6 (7) 6231–6235 (2012)CrossRef
249.
go back to reference Lee, M, Chen, CY, Wang, S, Cha, SN, Park, YJ, Kim, JM, Chou, LJ, Wang, Z, “A Hybrid Piezoelectric Structure for Wearable Nanogenerators.” Adv. Mater., 24 (13) 1759–1764 (2012)CrossRef Lee, M, Chen, CY, Wang, S, Cha, SN, Park, YJ, Kim, JM, Chou, LJ, Wang, Z, “A Hybrid Piezoelectric Structure for Wearable Nanogenerators.” Adv. Mater., 24 (13) 1759–1764 (2012)CrossRef
250.
go back to reference Khan, A, Ali Abbasi, M, Hussain, M, Hussain Ibupoto, Z, Wissting, J, Nur, O, Willander, M, “Piezoelectric Nanogenerator Based on Zinc Oxide Nanorods Grown on Textile Cotton Fabric.” Appl. Phys. Lett., 101 (19) 193506 (2012)CrossRef Khan, A, Ali Abbasi, M, Hussain, M, Hussain Ibupoto, Z, Wissting, J, Nur, O, Willander, M, “Piezoelectric Nanogenerator Based on Zinc Oxide Nanorods Grown on Textile Cotton Fabric.” Appl. Phys. Lett., 101 (19) 193506 (2012)CrossRef
251.
go back to reference Fang, J, Niu, H, Wang, H, Wang, X, Lin, T, “Enhanced Mechanical Energy Harvesting Using Needleless Electrospun Poly (Vinylidene Fluoride) Nanofibre Webs.” Energy Environ. Sci., 6 (7) 2196–2202 (2013)CrossRef Fang, J, Niu, H, Wang, H, Wang, X, Lin, T, “Enhanced Mechanical Energy Harvesting Using Needleless Electrospun Poly (Vinylidene Fluoride) Nanofibre Webs.” Energy Environ. Sci., 6 (7) 2196–2202 (2013)CrossRef
252.
go back to reference Guan, X, Xu, B, Gong, J, “Hierarchically Architected Polydopamine Modified BaTiO3@ P (VDF-TrFE) Nanocomposite Fiber Mats for Flexible Piezoelectric Nanogenerators and Self-Powered Sensors.” Nano Energy, 70 104516 (2020)CrossRef Guan, X, Xu, B, Gong, J, “Hierarchically Architected Polydopamine Modified BaTiO3@ P (VDF-TrFE) Nanocomposite Fiber Mats for Flexible Piezoelectric Nanogenerators and Self-Powered Sensors.” Nano Energy, 70 104516 (2020)CrossRef
253.
go back to reference He, W, Van Ngoc, H, Qian, YT, Hwang, JS, Yan, YP, Choi, H, Kang, DJ, “Synthesis of Ultra-Thin Tellurium Nanoflakes on Textiles For High-Performance Flexible and Wearable Nanogenerators.” Appl. Surf. Sci., 392 1055–1061 (2017)CrossRef He, W, Van Ngoc, H, Qian, YT, Hwang, JS, Yan, YP, Choi, H, Kang, DJ, “Synthesis of Ultra-Thin Tellurium Nanoflakes on Textiles For High-Performance Flexible and Wearable Nanogenerators.” Appl. Surf. Sci., 392 1055–1061 (2017)CrossRef
254.
go back to reference Mokhtari, F, Spinks, GM, Fay, C, Cheng, Z, Raad, R, Xi, J, Foroughi, J, “Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers.” Adv. Mater. Technol., 5 (4) 1900900 (2020)CrossRef Mokhtari, F, Spinks, GM, Fay, C, Cheng, Z, Raad, R, Xi, J, Foroughi, J, “Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers.” Adv. Mater. Technol., 5 (4) 1900900 (2020)CrossRef
255.
go back to reference Liao, Q, Zhang, Z, Zhang, X, Mohr, M, Zhang, Y, Fecht, H-J, “Flexible Piezoelectric Nanogenerators Based on a Fiber/ZnO Nanowires/Paper Hybrid Structure for Energy Harvesting.” Nano Res., 7 (6) 917–928 (2014)CrossRef Liao, Q, Zhang, Z, Zhang, X, Mohr, M, Zhang, Y, Fecht, H-J, “Flexible Piezoelectric Nanogenerators Based on a Fiber/ZnO Nanowires/Paper Hybrid Structure for Energy Harvesting.” Nano Res., 7 (6) 917–928 (2014)CrossRef
Metadata
Title
Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review
Authors
Anum Rashid
Usman Zubair
Munir Ashraf
Amjed Javid
Hafiz Affan Abid
Saba Akram
Publication date
28-11-2022
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 1/2023
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-022-00690-2

Other articles of this Issue 1/2023

Journal of Coatings Technology and Research 1/2023 Go to the issue

Premium Partners