Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 12/2021

19-06-2021 | Research Article-Mechanical Engineering

Flow Boiling Performance Analysis of Copper–Titanium Oxide Micro-/Nanostructured Surfaces Developed by Single-Step Forced Convection Electrodeposition Technique

Authors: Sanjay Kumar Gupta, Rahul Dev Misra

Published in: Arabian Journal for Science and Engineering | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As per the available literature, most of the techniques used for boiling surface modification utilize high operational temperature and longer production duration, ensuing in higher energy utilization with more safety worries for large scale of manufacturing. Again, the important criterion for boiling surfaces is to control the porous layer (porosity) to achieve high rate of cooling. Considering these aspects, a nature-inspired and simple technique for surface modification is proposed in the present work, which is single-step forced convection electrochemical deposition followed by single-step sintering. In this technique, the surface properties can be easily managed. Using this technique, the nanocomposite coatings of higher thermal conductive Cu–TiO2 (~ 300 W/mK) nanoparticles are fabricated on copper heating surface. The growth in nanograins is occurred during sintering process, which enhances the connectivity between the deposited nanograins. The porosity, thickness of porous layer, roughness, and wettability of the electrodeposited structured surfaces are raised with amplified current supply up to 75%, 42 µm, 1.32 µm, and 38°, respectively. The heat transfer performances of these developed surfaces are analyzed through flow boiling experiments. The maximum enhancement in critical heat flux (~ 143%) and heat transfer coefficient (~ 153%) is attained on developed coated surface at lower mass flux. These augmentations are attributed to better surface wettability and better surface morphological characteristics of the developed surfaces, which are due to the existence of sufficient liquid microlayer on them. The proposed electrodeposition technique can be employed for practical cooling applications where effective handling of high rate of heat flux is a challenge.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shojaeian, M.; Kosar, A.: Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Thermal Fluid Sci. 63, 45–73 (2015) Shojaeian, M.; Kosar, A.: Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Thermal Fluid Sci. 63, 45–73 (2015)
2.
go back to reference Xu, O.P.; Li, Q.; Xuan, Y.: Enhanced boiling heat transfer on composite porous surface. Int. J. Heat Mass Transf. 80, 107–114 (2015) Xu, O.P.; Li, Q.; Xuan, Y.: Enhanced boiling heat transfer on composite porous surface. Int. J. Heat Mass Transf. 80, 107–114 (2015)
3.
go back to reference Barber, J.; Brutin, D.; Tadrist, L.: A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett. 6(280), 1–16 (2011) Barber, J.; Brutin, D.; Tadrist, L.: A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett. 6(280), 1–16 (2011)
5.
go back to reference Hae Min Park: Yong Hoon Jeong, Flow boiling CHF enhancement by wettability and flow conditions in a slug flow in the rectangular curved channel. Exp. Thermal Fluid Sci. 91, 388–398 (2018) Hae Min Park: Yong Hoon Jeong, Flow boiling CHF enhancement by wettability and flow conditions in a slug flow in the rectangular curved channel. Exp. Thermal Fluid Sci. 91, 388–398 (2018)
6.
go back to reference Gouda, R.K.; Pathak, M.; Khan, M.K.: Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. Int. J. Heat Mass Transf. 127, 39–50 (2018) Gouda, R.K.; Pathak, M.; Khan, M.K.: Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. Int. J. Heat Mass Transf. 127, 39–50 (2018)
7.
go back to reference Wang, Y.-Q.; Luo, J.-L.; Heng, Yi.; Mo, D.-C.; Lyu, S.-S.: Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int. J. Heat Mass Transf. 119, 333–342 (2018) Wang, Y.-Q.; Luo, J.-L.; Heng, Yi.; Mo, D.-C.; Lyu, S.-S.: Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int. J. Heat Mass Transf. 119, 333–342 (2018)
8.
go back to reference Sarangi, S.; Weibel, J.A.; Garimella, S.V.: Effect of particle size on surface-coating enhancement of pool boiling heat transfer. Int. J. Heat Mass Transf. 81, 103–113 (2015) Sarangi, S.; Weibel, J.A.; Garimella, S.V.: Effect of particle size on surface-coating enhancement of pool boiling heat transfer. Int. J. Heat Mass Transf. 81, 103–113 (2015)
9.
go back to reference Arenales, M.R.M.; Kumar, S.C.S.; Kuo, L.-S.: P-HChen, Surface roughness variation effects on copper tubes in pool boiling of water. Int. J. Heat Mass Transf. 151, 119399 (2020) Arenales, M.R.M.; Kumar, S.C.S.; Kuo, L.-S.: P-HChen, Surface roughness variation effects on copper tubes in pool boiling of water. Int. J. Heat Mass Transf. 151, 119399 (2020)
10.
go back to reference Yu, Q.; Ma, X.; Wang, M.; Yu, C.; Bai, T.: Influence of embedded particles on microstructure, corrosion resistance and thermal conductivity of CuO/SiO2 and NiO/SiO2 nanocomposite coatings. Appl. Surf. Sci. 254(16), 5089–5094 (2008) Yu, Q.; Ma, X.; Wang, M.; Yu, C.; Bai, T.: Influence of embedded particles on microstructure, corrosion resistance and thermal conductivity of CuO/SiO2 and NiO/SiO2 nanocomposite coatings. Appl. Surf. Sci. 254(16), 5089–5094 (2008)
11.
go back to reference Akarapu, A.: Surface Property Modification of Copper by Nanocomposite Coating. National Institute of Technology, Rourkela (2011) Akarapu, A.: Surface Property Modification of Copper by Nanocomposite Coating. National Institute of Technology, Rourkela (2011)
12.
go back to reference Gan, Y.; Lee, D.; Chen, X.; Kysar, J.W.: Structure and properties of electrocodeposited Cu-Al2O3 nanocomposite thin films. J. Eng. Mater. Technol. 127(4), 451–456 (2005) Gan, Y.; Lee, D.; Chen, X.; Kysar, J.W.: Structure and properties of electrocodeposited Cu-Al2O3 nanocomposite thin films. J. Eng. Mater. Technol. 127(4), 451–456 (2005)
13.
go back to reference Bund, A.; Thiemig, D.: Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel. Surf. Coat. Technol. 201(16–17), 7092–7099 (2007) Bund, A.; Thiemig, D.: Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel. Surf. Coat. Technol. 201(16–17), 7092–7099 (2007)
14.
go back to reference Allahkaram, S.R.; Golroh, S.; Mohammadalipour, M.: Properties of Al2O3 nanoparticle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating. Mater. Des. 32(8–9), 4478–4484 (2011) Allahkaram, S.R.; Golroh, S.; Mohammadalipour, M.: Properties of Al2O3 nanoparticle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating. Mater. Des. 32(8–9), 4478–4484 (2011)
15.
go back to reference Chen, R.; Lu, M.-C.; Srinivasan, V.; Wang, Z.; Cho, H.H.; Majumdar, A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9(2), 548–553 (2009) Chen, R.; Lu, M.-C.; Srinivasan, V.; Wang, Z.; Cho, H.H.; Majumdar, A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9(2), 548–553 (2009)
16.
go back to reference Morshed, A.K.M.M.; Yang, F.; Yakut Ali, M.; Khan, J.A.; Li, C.: Enhanced flow boiling in a microchannel with integration of nanowires. Appl. Therm. Eng. 32(2012), 68–75 (2012) Morshed, A.K.M.M.; Yang, F.; Yakut Ali, M.; Khan, J.A.; Li, C.: Enhanced flow boiling in a microchannel with integration of nanowires. Appl. Therm. Eng. 32(2012), 68–75 (2012)
17.
go back to reference Dixit, P.; Lin, N.; Miao, J.; Wong, W.K.; Choon, T.K.: Silicon nanopillars based 3D stacked microchannel heat sinks concept for enhanced heat dissipation applications in MEMS packaging. Sens. Actuators A 141(2), 685–694 (2008) Dixit, P.; Lin, N.; Miao, J.; Wong, W.K.; Choon, T.K.: Silicon nanopillars based 3D stacked microchannel heat sinks concept for enhanced heat dissipation applications in MEMS packaging. Sens. Actuators A 141(2), 685–694 (2008)
18.
go back to reference Khanikar, V.; Mudawar, I.; Fisher, T.: Effects of carbon nanotube coating on flow boiling in a micro-channel. Int. J. Heat Mass Transf. 52(15–16), 3805–3817 (2009) Khanikar, V.; Mudawar, I.; Fisher, T.: Effects of carbon nanotube coating on flow boiling in a micro-channel. Int. J. Heat Mass Transf. 52(15–16), 3805–3817 (2009)
19.
go back to reference Li, C.; Wang, Z.; Wang, P.-I.; Peles, Y.; Koratkar, N.; Peterson, G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4(8), 1084–1088 (2008) Li, C.; Wang, Z.; Wang, P.-I.; Peles, Y.; Koratkar, N.; Peterson, G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4(8), 1084–1088 (2008)
20.
go back to reference Chang, J.Y.; You, S.M.: Enhanced boiling heat transfer from micro-porous surfaces:effect of a coating composition and method. Int. J. Heat Mass Transf. 40, 4449–4460 (1997) Chang, J.Y.; You, S.M.: Enhanced boiling heat transfer from micro-porous surfaces:effect of a coating composition and method. Int. J. Heat Mass Transf. 40, 4449–4460 (1997)
21.
go back to reference Yang, C.Y.; Liu, C.F.: Effect of coating layer for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp. Therm. Fluid Sci. 47, 40–47 (2013) Yang, C.Y.; Liu, C.F.: Effect of coating layer for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp. Therm. Fluid Sci. 47, 40–47 (2013)
22.
go back to reference Suganthi, K.S.; Vinodhan, V.L.; Rajan, K.S.: Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl. Energy 135, 548–559 (2014) Suganthi, K.S.; Vinodhan, V.L.; Rajan, K.S.: Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl. Energy 135, 548–559 (2014)
23.
go back to reference Vemuri, S.; Kim, K.J.: Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. 32, 27–31 (2005) Vemuri, S.; Kim, K.J.: Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. 32, 27–31 (2005)
24.
go back to reference Wu, W.; Bostanci, H.; Chow, L.C.; Hong, Y.; Su, M.; Kizito, J.P.: Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int. J. Heat Mass Transf. 53, 1773–1777 (2010) Wu, W.; Bostanci, H.; Chow, L.C.; Hong, Y.; Su, M.; Kizito, J.P.: Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int. J. Heat Mass Transf. 53, 1773–1777 (2010)
25.
go back to reference Forrest, E.; Williamson, E.; Buongiorno, J.; Hu, L.W.; Rubner, M.; Cohen, R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf. 53, 58–67 (2010) Forrest, E.; Williamson, E.; Buongiorno, J.; Hu, L.W.; Rubner, M.; Cohen, R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf. 53, 58–67 (2010)
26.
go back to reference Jo, H.; Kim, S.; Kim, H.; Kim, J.; Kim, M.H.: Nucleate boiling performance on nano/ microstructures with different wetting surfaces. Nanoscale Res. Lett. 7, 1–9 (2012) Jo, H.; Kim, S.; Kim, H.; Kim, J.; Kim, M.H.: Nucleate boiling performance on nano/ microstructures with different wetting surfaces. Nanoscale Res. Lett. 7, 1–9 (2012)
27.
go back to reference Im, Y.; Dietz, C.; Lee, S.S.; Joshi, Y.: Flower-like CuO nanostructures for enhanced boiling. Nanosc. Microsc. Therm. 16, 145–153 (2012) Im, Y.; Dietz, C.; Lee, S.S.; Joshi, Y.: Flower-like CuO nanostructures for enhanced boiling. Nanosc. Microsc. Therm. 16, 145–153 (2012)
28.
go back to reference Das, S.; Kumar, D.S.; Bhaumik, S.: Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng. 96, 555–567 (2016) Das, S.; Kumar, D.S.; Bhaumik, S.: Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng. 96, 555–567 (2016)
29.
go back to reference Karunagaran, B.; Rajendra Kumar, R.T.; Kumar, V.S.; Mangalaraj, D.; Narayandass, S.K.; Rao, G.M.: Structural characterization of DC magnetronsputtered TiO2 thin films using XRD and Raman scattering studies. Mater. Sci. Semicond. Process. 6, 547–550 (2003) Karunagaran, B.; Rajendra Kumar, R.T.; Kumar, V.S.; Mangalaraj, D.; Narayandass, S.K.; Rao, G.M.: Structural characterization of DC magnetronsputtered TiO2 thin films using XRD and Raman scattering studies. Mater. Sci. Semicond. Process. 6, 547–550 (2003)
30.
go back to reference Bera, A.; Thapa, R.; Chattopadhyay, K.K.; Saha, B.: In plane conducting channel at the interface of CdO–ZnO isotype thin film heterostructure. J. Alloys Comp. 632, 343–347 (2015) Bera, A.; Thapa, R.; Chattopadhyay, K.K.; Saha, B.: In plane conducting channel at the interface of CdO–ZnO isotype thin film heterostructure. J. Alloys Comp. 632, 343–347 (2015)
31.
go back to reference Saha, B.; Das, N.S.; Chattopadhyay, K.K.: Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films. Thin Solid Films 562, 37–42 (2014) Saha, B.; Das, N.S.; Chattopadhyay, K.K.: Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films. Thin Solid Films 562, 37–42 (2014)
32.
go back to reference Patil, C.M.; Santhanam, K.S.V.; Kandlikar, S.G.: Development of a two-step electrodeposition process for enhancing pool boiling. Int. J. Heat Mass Transf. 79, 989–1001 (2014) Patil, C.M.; Santhanam, K.S.V.; Kandlikar, S.G.: Development of a two-step electrodeposition process for enhancing pool boiling. Int. J. Heat Mass Transf. 79, 989–1001 (2014)
33.
go back to reference Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M.: Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta Part A 133, 669–676 (2014) Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M.: Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta Part A 133, 669–676 (2014)
34.
go back to reference Ishii, A.; Nakamura, Y.; Oikawa, I.; Kamegawa, A.; Takamura, H.: Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition. Appl. Surf. Sci. 347, 528–534 (2015) Ishii, A.; Nakamura, Y.; Oikawa, I.; Kamegawa, A.; Takamura, H.: Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition. Appl. Surf. Sci. 347, 528–534 (2015)
35.
go back to reference Sujith Kumar, C.S.; Suresh, S.; Yang, Q.; Aneesh, C.R.: An experimental investigation on flow boiling heat transfer enhancement using spray pyrolysed alumina porous coatings. Appl. Therm. Eng. 71, 508–518 (2014) Sujith Kumar, C.S.; Suresh, S.; Yang, Q.; Aneesh, C.R.: An experimental investigation on flow boiling heat transfer enhancement using spray pyrolysed alumina porous coatings. Appl. Therm. Eng. 71, 508–518 (2014)
36.
go back to reference Shin, H.C.; Dong, J.; Liu, M.: Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003) Shin, H.C.; Dong, J.; Liu, M.: Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003)
37.
go back to reference Kim, J. H.: Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques (Ph.D. thesis), University of Texas at Arlington, TX, USA (2006) Kim, J. H.: Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques (Ph.D. thesis), University of Texas at Arlington, TX, USA (2006)
39.
go back to reference Nikolic, N.D.: Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zastita Materijala 51, 1970203 (2010) Nikolic, N.D.: Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zastita Materijala 51, 1970203 (2010)
40.
go back to reference Wang, Y.; Sefiance, K.: Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. Int. J. Heat Mass Transf. 55, 2235–2243 (2012) Wang, Y.; Sefiance, K.: Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. Int. J. Heat Mass Transf. 55, 2235–2243 (2012)
41.
go back to reference Gupta, S.K.; Misra, R.D.: An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Exp. Therm. Fluid Sci. 98, 406–419 (2018) Gupta, S.K.; Misra, R.D.: An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Exp. Therm. Fluid Sci. 98, 406–419 (2018)
42.
go back to reference Morshed, A.K.M.M.; Paul, T.C.; Khan, J.: Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl. Therm. Eng. 51, 1135–1143 (2013) Morshed, A.K.M.M.; Paul, T.C.; Khan, J.: Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl. Therm. Eng. 51, 1135–1143 (2013)
43.
go back to reference Lenz, P.; Lipowsky, R.: Morphological transitions of wetting layers on structured surfaces. Phys. Rev. Lett. 80, 1920–1923 (1998) Lenz, P.; Lipowsky, R.: Morphological transitions of wetting layers on structured surfaces. Phys. Rev. Lett. 80, 1920–1923 (1998)
44.
go back to reference Young Lee, C.; Hossain Bhuiya, M.M.; Kim, K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transf. 53, 4274–4279 (2010) Young Lee, C.; Hossain Bhuiya, M.M.; Kim, K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transf. 53, 4274–4279 (2010)
45.
go back to reference Zhang, B.J.; Kim, K.J.; Yoon, H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transf. 55, 7487–7498 (2012) Zhang, B.J.; Kim, K.J.; Yoon, H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transf. 55, 7487–7498 (2012)
46.
go back to reference Lee, C.Y.; Zhang, B.J.; Kim, K.J.: Influence of heated surfaces and fluids on pool boiling heat transfer. Exp. Therm. Fluid Sci. 59, 15–23 (2014) Lee, C.Y.; Zhang, B.J.; Kim, K.J.: Influence of heated surfaces and fluids on pool boiling heat transfer. Exp. Therm. Fluid Sci. 59, 15–23 (2014)
47.
go back to reference Kandlikar, S.: A theoretical Model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071–1079 (2002) Kandlikar, S.: A theoretical Model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071–1079 (2002)
49.
go back to reference Sarafraz, M.M.; Hormozi, F.: Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int. J. Therm. Sci. 100, 255–266 (2016) Sarafraz, M.M.; Hormozi, F.: Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int. J. Therm. Sci. 100, 255–266 (2016)
Metadata
Title
Flow Boiling Performance Analysis of Copper–Titanium Oxide Micro-/Nanostructured Surfaces Developed by Single-Step Forced Convection Electrodeposition Technique
Authors
Sanjay Kumar Gupta
Rahul Dev Misra
Publication date
19-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 12/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05850-x

Other articles of this Issue 12/2021

Arabian Journal for Science and Engineering 12/2021 Go to the issue

Premium Partners