Skip to main content
Top

2018 | OriginalPaper | Chapter

Flow Manipulation by Standing Acoustic Waves and Visualization with Background Oriented Schlieren (BOS)

Authors : Christian Kiefer, Dara Feili, Karin Bauer, Helmut Seidel

Published in: New Results in Numerical and Experimental Fluid Mechanics XI

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a novel approach for flow manipulation by standing acoustic waves is presented. A phased array of ultrasonic transducers operating at 40 kHz is used to generate acoustic waves of various patterns. The interaction of these wave patterns with a thermally induced air flow (thermal convection) is evaluated. The Background Oriented Schlieren method (BOS) in combination with a thermal “contrast medium” allowed a clear visualization of the effects. The final images were generated from the raw data by applying an easy to implement pixel-by-pixel difference method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In this work GIMP Version 2.8.16 was used.
 
Literature
1.
go back to reference Air Transport Action Group (ATAG): Aviation Climate Solution (2015) Air Transport Action Group (ATAG): Aviation Climate Solution (2015)
2.
go back to reference BDL - Bundesverband der Deutschen Luftverkehrswirtschaft e.V.: Report 2015 - Energieeffizienz und Klimaschutz (2015) BDL - Bundesverband der Deutschen Luftverkehrswirtschaft e.V.: Report 2015 - Energieeffizienz und Klimaschutz (2015)
3.
go back to reference Argüelles, P., Bischoff, M., et al.: European Aeronautics: A Vision for 2020. ACARE (2001) Argüelles, P., Bischoff, M., et al.: European Aeronautics: A Vision for 2020. ACARE (2001)
4.
go back to reference Advisory Council for Aeronautics Research in Europe (ACARE): European Commission. Flightpath 2050. Europe’s vision for aviation. Report of the High Level Group on Aviation Research (2011) Advisory Council for Aeronautics Research in Europe (ACARE): European Commission. Flightpath 2050. Europe’s vision for aviation. Report of the High Level Group on Aviation Research (2011)
5.
go back to reference FOR 1779 Symposium—Active Drag Reduction, Aachen, Germany (2015) FOR 1779 Symposium—Active Drag Reduction, Aachen, Germany (2015)
6.
go back to reference Gad-el-Hak, M.: Modern developments in flow control. Appl. Mech. Rev. 49(7), 365–379 (2009)CrossRef Gad-el-Hak, M.: Modern developments in flow control. Appl. Mech. Rev. 49(7), 365–379 (2009)CrossRef
7.
go back to reference Wang, J.-J., Choi, K.-S., Feng, L.-H., Jukes, T.N., Whalley, R.D.: Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 52–78 (2013)CrossRef Wang, J.-J., Choi, K.-S., Feng, L.-H., Jukes, T.N., Whalley, R.D.: Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 52–78 (2013)CrossRef
8.
go back to reference Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368, 4775–4806 (2010)CrossRef Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368, 4775–4806 (2010)CrossRef
9.
go back to reference Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. J. Flow Turbul. Combust. 85(1), 57–71 (2010)CrossRefMATH Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. J. Flow Turbul. Combust. 85(1), 57–71 (2010)CrossRefMATH
10.
go back to reference Bechert, D.W., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129 (1989)CrossRef Bechert, D.W., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129 (1989)CrossRef
11.
go back to reference Yoshino, T., Suzuki, Y., Kasagi, N.: Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. J. Fluid Sci. Technol. 3(1), 137–148 (2008)CrossRef Yoshino, T., Suzuki, Y., Kasagi, N.: Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. J. Fluid Sci. Technol. 3(1), 137–148 (2008)CrossRef
12.
go back to reference Choi, K.-S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530–2542 (2002)CrossRefMATH Choi, K.-S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530–2542 (2002)CrossRefMATH
13.
go back to reference Klumpp, S., Meinke, M., Schröder, W.: Friction drag variation via spanwise transversal surface waves. J. Flow Turbul. Combust. 87(1), 33–53 (2011)CrossRefMATH Klumpp, S., Meinke, M., Schröder, W.: Friction drag variation via spanwise transversal surface waves. J. Flow Turbul. Combust. 87(1), 33–53 (2011)CrossRefMATH
14.
go back to reference Bücks, K., Müller, H.: Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld. Zeitschrift für Physik 84(1–2), 75–86 (1933)CrossRef Bücks, K., Müller, H.: Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld. Zeitschrift für Physik 84(1–2), 75–86 (1933)CrossRef
16.
go back to reference Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie Dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33(4), article no. 85 (2014) Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie Dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33(4), article no. 85 (2014)
17.
go back to reference Tuckermann, R., Bauerecker, S.: Wie akustische Kaltgasfallen wirken. “Tannenbäume” im stehenden Ultraschallfeld. Chem. unserer Zeit 42(6), 402–407 (2008)CrossRef Tuckermann, R., Bauerecker, S.: Wie akustische Kaltgasfallen wirken. “Tannenbäume” im stehenden Ultraschallfeld. Chem. unserer Zeit 42(6), 402–407 (2008)CrossRef
18.
19.
go back to reference Meier, G.E.A.: Hintergrund-Schlierenmessverfahren. German patent, DE19942856A1 (2000) Meier, G.E.A.: Hintergrund-Schlierenmessverfahren. German patent, DE19942856A1 (2000)
20.
go back to reference Raffel, M., Richard, H., Meier, G.E.A.: On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 28(5), 477–481 (2000)CrossRef Raffel, M., Richard, H., Meier, G.E.A.: On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 28(5), 477–481 (2000)CrossRef
21.
go back to reference Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12(9), 85–1576 (2001)CrossRef Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12(9), 85–1576 (2001)CrossRef
23.
go back to reference Yarin, A.L., Brenn, G., Keller, J., Pfaffenlehner, M., Ryssel, E., Tropea, C.: Flowfield characteristics of an aerodynamic acoustic levitator. Phys. Fluids 9(11), 3300–3314 (1997)CrossRef Yarin, A.L., Brenn, G., Keller, J., Pfaffenlehner, M., Ryssel, E., Tropea, C.: Flowfield characteristics of an aerodynamic acoustic levitator. Phys. Fluids 9(11), 3300–3314 (1997)CrossRef
Metadata
Title
Flow Manipulation by Standing Acoustic Waves and Visualization with Background Oriented Schlieren (BOS)
Authors
Christian Kiefer
Dara Feili
Karin Bauer
Helmut Seidel
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-64519-3_21

Premium Partners