Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Flow Mechanism in High Pressure Turbines

Authors : Zhengping Zou, Songtao Wang, Huoxing Liu, Weihao Zhang

Published in: Axial Turbine Aerodynamics for Aero-engines

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High pressure turbine (HP turbine, HPT) technologies are developed inseparably from the development of engines. The characteristic parameter of some high pressure turbines, as shown in Table 2.1, was collected from engine manuals and other materials for reference. As can be seen from the table, with the continuous development of the engines, their thrust-to-weight ratio, turbine inlet temperature, and overall pressure ratio are reaching higher and higher levels, which means the high-pressure turbines will be operating in more severe environment and it becomes more and more challenging to study and design high-performance high-pressure turbines.
Table 2.1
Parameters of civil and military engines
Engine type
Model
Thrust to weight ratio
Fuel consumption (kg/daN h)
Turbine inlet temp. (K)
Overall pressure ratio
Pressure ratio of high pressure compressor
Number of high pressure turbine stages and expansion ratio
Manufacturer
Civil engines
CF6-50A
6.18
0.6505
1583
32.5
13
2/4.4236
GE
CF6-80C2
6.8
0.61
1588
30.4–32.7
13
2/
GE
GE90
6.3
0.56
1703
39.3
23
2/
GE
JT9D
5.63
0.6903
1585
24.21
10.3
2/3.6225
PW
PW2000
5.24
0.574
1698
27.6
 
2
PW
PW4084
6.0
0.566
1777
34.2
 
2
PW
V2500-A5
5.84
0.585
1700
31.4
 
2
IAE
CFM56-5C2
5.5
0.577
1635
37.4
11.2
1/3.78
CFM
Trent884
5.3
0.567
1686
39.88
 
1 (three-axis)
RR
Military engines
F404-402
7.83
0.76
1686
26
 
1
GE
F110-129
9.5
0.7
1728
32
 
1
GE
F100-229
7.9
0.66
1672
32
 
1
PW
F119
11.6
0.62
1950
35
 
1
PW
M88-2
8.8
0.89
1850
25
 
1
SNECMA
AL-31F
7.14
0.795
1665
23.8
 
1
NPO

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ke Do Lev, T. (1978). Aero engine turbine calculation [M]. Beijing: National Defense Industry Press, the First edition, 06, 1978. Ke Do Lev, T. (1978). Aero engine turbine calculation [M]. Beijing: National Defense Industry Press, the First edition, 06, 1978.
2.
go back to reference Oates, G. C., et al. (1985). Aerothermodynamics of aircraft engine components [M]. AIAA. Oates, G. C., et al. (1985). Aerothermodynamics of aircraft engine components [M]. AIAA.
3.
go back to reference Liu, S. (1990). Principle of turbines for vesses [M]. Harbin: Harbin Institution of Technology Press. Liu, S. (1990). Principle of turbines for vesses [M]. Harbin: Harbin Institution of Technology Press.
4.
go back to reference Wang, Z., & Qin, R. (1988). Principle of turbomachinery [M]. Beijing: China Machine Press. Wang, Z., & Qin, R. (1988). Principle of turbomachinery [M]. Beijing: China Machine Press.
5.
go back to reference Denton, J. D., & Xu, L. (1990). The trailing edge loss of transonic turbine blades [J]. Journal of Turbomachinery, 112(2), 277–285.CrossRef Denton, J. D., & Xu, L. (1990). The trailing edge loss of transonic turbine blades [J]. Journal of Turbomachinery, 112(2), 277–285.CrossRef
6.
go back to reference Laumert, B. (2002). Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage—Part I: phenomenological identification and classification [J]. Journal of Turbomachinery, 124(3), 410–418.CrossRef Laumert, B. (2002). Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage—Part I: phenomenological identification and classification [J]. Journal of Turbomachinery, 124(3), 410–418.CrossRef
7.
go back to reference Doorly, D. J., & Oldfield, M. L. G. (1985). Simulation of the effects of shock wave passing on a turbine rotor blade [J]. Journal of Engineering for Gas Turbines and Power, 107(4), 998–1006.CrossRef Doorly, D. J., & Oldfield, M. L. G. (1985). Simulation of the effects of shock wave passing on a turbine rotor blade [J]. Journal of Engineering for Gas Turbines and Power, 107(4), 998–1006.CrossRef
8.
go back to reference Johnson, A. B., Rigby, M. J., & Oldfield, M. L. G. (1989). Unsteady aerodynamic phenomena in a simulated wake and shock wave passing experiment [M]. Rolls-Royce PLC. Johnson, A. B., Rigby, M. J., & Oldfield, M. L. G. (1989). Unsteady aerodynamic phenomena in a simulated wake and shock wave passing experiment [M]. Rolls-Royce PLC.
9.
go back to reference Anderson, J. D., Jr. (1985). Fundamentals of aerodynamics [M]. Tata McGraw-Hill Education. Anderson, J. D., Jr. (1985). Fundamentals of aerodynamics [M]. Tata McGraw-Hill Education.
10.
go back to reference Sonoda, T., Arima, T., Olhofer, M., et al. (2006). A study of advanced high-loaded transonic turbine airfoils [J]. Journal of Turbomachinery, 128(4), 650–657.CrossRef Sonoda, T., Arima, T., Olhofer, M., et al. (2006). A study of advanced high-loaded transonic turbine airfoils [J]. Journal of Turbomachinery, 128(4), 650–657.CrossRef
11.
go back to reference Acharya, S. (2005). Endwall cooling with endwall contouring and leading edge fillet [R]. Annual Reports Submitted to UTSR. Acharya, S. (2005). Endwall cooling with endwall contouring and leading edge fillet [R]. Annual Reports Submitted to UTSR.
12.
go back to reference Mahmood, G. I., Gustafson, R., & Acharya, S. (2005). Experimental investigation of flow structure and Nusselt number in alow speed linear blade passage with and without leading edge fillets [J]. Journal of Heat Transfer, 127(5), 499–512.CrossRef Mahmood, G. I., Gustafson, R., & Acharya, S. (2005). Experimental investigation of flow structure and Nusselt number in alow speed linear blade passage with and without leading edge fillets [J]. Journal of Heat Transfer, 127(5), 499–512.CrossRef
14.
go back to reference Wang, H. P., Olson, S. J., Goldstein, R. J., et al. (1997). Flow visualization in a linear turbine cascade of high performance turbine blades [J]. Journal of Turbomachinery, 119(1), 1–8.CrossRef Wang, H. P., Olson, S. J., Goldstein, R. J., et al. (1997). Flow visualization in a linear turbine cascade of high performance turbine blades [J]. Journal of Turbomachinery, 119(1), 1–8.CrossRef
15.
go back to reference Moustapha, H., Zelesky, M. F., & Baines, N. C., et al. (2003). Axial and radial turbines [M]. Wilder, VT: Concepts NREC. Moustapha, H., Zelesky, M. F., & Baines, N. C., et al. (2003). Axial and radial turbines [M]. Wilder, VT: Concepts NREC.
16.
go back to reference Lampart, P. (2007). Tip leakage flows in turbines [J]. Task Quarterly, 10(2), 139–140. Lampart, P. (2007). Tip leakage flows in turbines [J]. Task Quarterly, 10(2), 139–140.
17.
go back to reference Halila, E. E., Lenahan, D. T., & Thomas, T. T. (1982). Energy efficient engine high pressure turbine test hardware detailed design report [R]. NASA CR-167955. Halila, E. E., Lenahan, D. T., & Thomas, T. T. (1982). Energy efficient engine high pressure turbine test hardware detailed design report [R]. NASA CR-167955.
18.
go back to reference Lattime, S. B., & Steinetz, B. M. (2004). High-pressure-turbine clearance control systems: current practices and future directions [J]. Journal of Propulsion and Power, 20(2), 302–311.CrossRef Lattime, S. B., & Steinetz, B. M. (2004). High-pressure-turbine clearance control systems: current practices and future directions [J]. Journal of Propulsion and Power, 20(2), 302–311.CrossRef
19.
go back to reference Denton, J. D. (2004). Axial turbine aerodynamic design [J]. Cambridge: Cambridge Turbomachinery Course, p. 22. Denton, J. D. (2004). Axial turbine aerodynamic design [J]. Cambridge: Cambridge Turbomachinery Course, p. 22.
20.
go back to reference Han, W., Zhong, J., Huang, H., et al. (1999). Topological and vortex structure the flow field of the positively curved cascade with the tip clearance [J]. Acta Aerodynamica Sinica, 17(2), 141–149. Han, W., Zhong, J., Huang, H., et al. (1999). Topological and vortex structure the flow field of the positively curved cascade with the tip clearance [J]. Acta Aerodynamica Sinica, 17(2), 141–149.
21.
go back to reference Lee, S. W., Moon, H. S., & Lee, S. E. (2009). Tip gap height effects on flow structure and heat/mass transfer over plane tip of a high-turning turbine rotor blade [J]. International Journal of Heat and Fluid Flow, 30(2), 198–210.CrossRef Lee, S. W., Moon, H. S., & Lee, S. E. (2009). Tip gap height effects on flow structure and heat/mass transfer over plane tip of a high-turning turbine rotor blade [J]. International Journal of Heat and Fluid Flow, 30(2), 198–210.CrossRef
22.
go back to reference Traupel W. (1977). Thermische Turbomaschinen Zweiter Band Geländerte Betriebsbedingungen, Regelung, Mechanische Problem, Temperature problem [M]. Berlin, New York: Springer-Verlag. Traupel W. (1977). Thermische Turbomaschinen Zweiter Band Geländerte Betriebsbedingungen, Regelung, Mechanische Problem, Temperature problem [M]. Berlin, New York: Springer-Verlag.
23.
go back to reference Ainley, D. G., & Mathieson, G. (1951). A method of performance estimation for axial-flow turbines [M]. Defense Technical Information Center. Ainley, D. G., & Mathieson, G. (1951). A method of performance estimation for axial-flow turbines [M]. Defense Technical Information Center.
24.
go back to reference Dunham, J., & Came, P. M. (1970). Improvements to the Ainley-Mathieson method of turbine performance prediction [J]. Journal for Engineering for Power, 92(3), 252–256.CrossRef Dunham, J., & Came, P. M. (1970). Improvements to the Ainley-Mathieson method of turbine performance prediction [J]. Journal for Engineering for Power, 92(3), 252–256.CrossRef
25.
go back to reference Kacker, S. C., & Okapuu, U. (1982). A mean line prediction method for axial flow turbine efficiency [J]. Journal for Engineering for Power, 104(1), 111–119.CrossRef Kacker, S. C., & Okapuu, U. (1982). A mean line prediction method for axial flow turbine efficiency [J]. Journal for Engineering for Power, 104(1), 111–119.CrossRef
26.
go back to reference Craig, H., & Cox, H. (1970). Performance estimation of axial flow turbines [J]. Proceedings of the Institution of Mechanical Engineers, 185(1), 407–424.CrossRef Craig, H., & Cox, H. (1970). Performance estimation of axial flow turbines [J]. Proceedings of the Institution of Mechanical Engineers, 185(1), 407–424.CrossRef
27.
go back to reference Denton, J. D. (1993). Loss mechanisms in turbomachines [J]. Journal of Turbomachinery, 115(4), 621–656.CrossRef Denton, J. D. (1993). Loss mechanisms in turbomachines [J]. Journal of Turbomachinery, 115(4), 621–656.CrossRef
28.
go back to reference Baljé, O. E., & Binsley, R. L. (1968). Axial turbine performance evaluation. Part B—optimization with and without constraints [J]. Journal for Engineering for Power, 90(4), 349–359. Baljé, O. E., & Binsley, R. L. (1968). Axial turbine performance evaluation. Part B—optimization with and without constraints [J]. Journal for Engineering for Power, 90(4), 349–359.
29.
go back to reference Yaras, M. I., & Sjolander, S. A. (1992). Prediction of tip-leakage losses in axial turbines [J]. Journal of Turbomachinery, 114(1), 204–210.CrossRef Yaras, M. I., & Sjolander, S. A. (1992). Prediction of tip-leakage losses in axial turbines [J]. Journal of Turbomachinery, 114(1), 204–210.CrossRef
30.
go back to reference Hamik, M., & Willinger, R. (2007). An innovative passive tip-leakage control method for axial turbines: basic concept and performance potential [J]. Journal of Thermal Science, 16(3), 215–222.CrossRef Hamik, M., & Willinger, R. (2007). An innovative passive tip-leakage control method for axial turbines: basic concept and performance potential [J]. Journal of Thermal Science, 16(3), 215–222.CrossRef
31.
go back to reference Egli, A. (1935). The leakage of steam through labyrnith seals [J]. Transactions of the ASME, 57(3):115–122. Egli, A. (1935). The leakage of steam through labyrnith seals [J]. Transactions of the ASME, 57(3):115–122.
32.
go back to reference El-Dosoky, M. F., Rona, A., & Gostelow, J. P. (2007). An analytical model for over-shroud leakage losses in a shrouded turbine stage [R]. ASME Paper GT2007-27786. El-Dosoky, M. F., Rona, A., & Gostelow, J. P. (2007). An analytical model for over-shroud leakage losses in a shrouded turbine stage [R]. ASME Paper GT2007-27786.
33.
go back to reference Goldstein, R. J. (1971). Film cooling [J]. Advances in Heat Transfer, 7(1):321–379. Goldstein, R. J. (1971). Film cooling [J]. Advances in Heat Transfer, 7(1):321–379.
34.
go back to reference Moffitt, T. P., Stepka, F. S., & Rohlik, H. E. (1976). Summary of NASA aerodynamic and heat transfer studies in turbine vanes and blades [R]. NASA TM-X-73518. Moffitt, T. P., Stepka, F. S., & Rohlik, H. E. (1976). Summary of NASA aerodynamic and heat transfer studies in turbine vanes and blades [R]. NASA TM-X-73518.
35.
go back to reference Zhang, L., & Moon, H. K. (2006). Turbine blade film cooling study—The effects of showerhead geometry [R]. ASME Paper GT2006-90367. Zhang, L., & Moon, H. K. (2006). Turbine blade film cooling study—The effects of showerhead geometry [R]. ASME Paper GT2006-90367.
36.
go back to reference Martini, P., Schulz, A., & Bauer, H. J. (2005). Film cooling effectiveness and heat transfer on the trailing edge cut-back of turbine airfoils with various internal cooling designs [R]. ASME Paper GT2005-68083. Martini, P., Schulz, A., & Bauer, H. J. (2005). Film cooling effectiveness and heat transfer on the trailing edge cut-back of turbine airfoils with various internal cooling designs [R]. ASME Paper GT2005-68083.
37.
go back to reference Uzol, O., Camci, C., & Glezer, B. (2001). Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: Part 1—Effect of cut-back length, spanwise rib spacing, free-stream Reynolds number, and chordwise rib length on discharge coefficients [J]. Journal of Turbomachinery, 123(2), 238–248.CrossRef Uzol, O., Camci, C., & Glezer, B. (2001). Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: Part 1—Effect of cut-back length, spanwise rib spacing, free-stream Reynolds number, and chordwise rib length on discharge coefficients [J]. Journal of Turbomachinery, 123(2), 238–248.CrossRef
38.
go back to reference Uzol, O., & Camci, C. (2001). Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: Part 2—External aerodynamics, total pressure losses, and predictions [J]. Journal of Turbomachinery, 123(2), 249–257.CrossRef Uzol, O., & Camci, C. (2001). Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: Part 2—External aerodynamics, total pressure losses, and predictions [J]. Journal of Turbomachinery, 123(2), 249–257.CrossRef
39.
go back to reference Day, C. R. B., Lock, G. D., & Oldfield, M. L. G., et al. (1998). Efficiency measurements of an annular nozzle guide vane cascade with different film cooling geometries [R]. ASME Paper 98-GT-538. Day, C. R. B., Lock, G. D., & Oldfield, M. L. G., et al. (1998). Efficiency measurements of an annular nozzle guide vane cascade with different film cooling geometries [R]. ASME Paper 98-GT-538.
40.
go back to reference Kubo, R., Otomo, E., & Fukuyama, Y., et al. (1998). Aerodynamicloss increase due to individual film cooling injection from gas turbine nozzle surface [R]. ASME Paper 98-GT-497. Kubo, R., Otomo, E., & Fukuyama, Y., et al. (1998). Aerodynamicloss increase due to individual film cooling injection from gas turbine nozzle surface [R]. ASME Paper 98-GT-497.
41.
go back to reference Otomo, E., Nakatam, Y., Kubo, R., et al. (1997). Pressure loss characteristics of gas turbine nozzle blade row with individual film cooling injection rows [C]. In Proceeding of 25th Annual Gas Turbine Conference, JSME. Otomo, E., Nakatam, Y., Kubo, R., et al. (1997). Pressure loss characteristics of gas turbine nozzle blade row with individual film cooling injection rows [C]. In Proceeding of 25th Annual Gas Turbine Conference, JSME.
42.
go back to reference Aero Engine Design Handbook editorial board, & Huang, Q., et al. (2001). Aero engine design handbook, volume 10, turbine [M]. Beijing: Aviation Industry Press. Aero Engine Design Handbook editorial board, & Huang, Q., et al. (2001). Aero engine design handbook, volume 10, turbine [M]. Beijing: Aviation Industry Press.
43.
go back to reference York, R. E. (1984). HyltonLD, MihelcMS. An experimental investigation of endwall heat transfer and aerodynamics in a linear vane cascade [J]. Journal of Engineering for Gas Turbines and Power, 106(1), 159–167.CrossRef York, R. E. (1984). HyltonLD, MihelcMS. An experimental investigation of endwall heat transfer and aerodynamics in a linear vane cascade [J]. Journal of Engineering for Gas Turbines and Power, 106(1), 159–167.CrossRef
44.
go back to reference Aero Engine Design Handbook editorial board, & Wang H., et al. (2001). Aero engine design handbook, volume 16, Air system and heat transfer analysis [M]. Beijing: Aviation Industry Press. Aero Engine Design Handbook editorial board, & Wang H., et al. (2001). Aero engine design handbook, volume 16, Air system and heat transfer analysis [M]. Beijing: Aviation Industry Press.
45.
go back to reference Takeishi, K., Matsuura, M., Aoki, T., et al. (1990). Anexperimental study of heat transfer and film cooling on low aspectratio turbine nozzles [J]. Journal of Turbomachinery, 112(3), 488–496.CrossRef Takeishi, K., Matsuura, M., Aoki, T., et al. (1990). Anexperimental study of heat transfer and film cooling on low aspectratio turbine nozzles [J]. Journal of Turbomachinery, 112(3), 488–496.CrossRef
46.
go back to reference Granser, D., & Schulenberg T. (1990). Prediction and measurement of film cooling effectiveness for a first-stage turbinevane shroud [R]. ASME 90-GT-95. Granser, D., & Schulenberg T. (1990). Prediction and measurement of film cooling effectiveness for a first-stage turbinevane shroud [R]. ASME 90-GT-95.
47.
go back to reference Harasgama, S. P., & Burton, C. D. (1991). Film cooling research on the endwall of a turbine nozzle guide vane in a short duration cascade Part 1: Experimental technique and results [R]. ASME91-GT-252. Harasgama, S. P., & Burton, C. D. (1991). Film cooling research on the endwall of a turbine nozzle guide vane in a short duration cascade Part 1: Experimental technique and results [R]. ASME91-GT-252.
48.
go back to reference Harasgama, S. P., & Burton, C. D. (1991). Film coolingresearch on the endwall of a turbine nozzle guide vane in a shortduration cascade Part 2: Analysis and correlation of results [R]. ASME91-GT-253. Harasgama, S. P., & Burton, C. D. (1991). Film coolingresearch on the endwall of a turbine nozzle guide vane in a shortduration cascade Part 2: Analysis and correlation of results [R]. ASME91-GT-253.
49.
go back to reference Georgiou, D. P., Papavasilopoulos, V. A., & Alevisos, M. (1996). Experimental contribution on the significance and the control by transverse injection of the horseshoe vortex [R]. ASME 96-GT-255. Georgiou, D. P., Papavasilopoulos, V. A., & Alevisos, M. (1996). Experimental contribution on the significance and the control by transverse injection of the horseshoe vortex [R]. ASME 96-GT-255.
50.
go back to reference Burd, S. W., Simon, T. W. (2000). Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance: Part I—Flow field measurements [R]. ASME 2000-GT-199. Burd, S. W., Simon, T. W. (2000). Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance: Part I—Flow field measurements [R]. ASME 2000-GT-199.
51.
go back to reference Liu, S., Liu, G., & Xu, D., et al. (1999). Aerodynamic investigation of endwall film-cooling in an axialturbine cascade Part I: experimental investigation [R]. AIAA ISABE99-7080. Liu, S., Liu, G., & Xu, D., et al. (1999). Aerodynamic investigation of endwall film-cooling in an axialturbine cascade Part I: experimental investigation [R]. AIAA ISABE99-7080.
52.
go back to reference Zhang, L. J., & Jaiswal, R. S. (2001). Turbinenozzle endwall film cooling study using pressure sensitive paint [R]. ASME2001-GT-0147. Zhang, L. J., & Jaiswal, R. S. (2001). Turbinenozzle endwall film cooling study using pressure sensitive paint [R]. ASME2001-GT-0147.
53.
go back to reference Friedrich, K., & Martin, N. (2001). Film-cooled turbine endwall in a transonic flow field: Part I- aerodynamic measurements [R]. ASME 2001-GT-0145. Friedrich, K., & Martin, N. (2001). Film-cooled turbine endwall in a transonic flow field: Part I- aerodynamic measurements [R]. ASME 2001-GT-0145.
54.
go back to reference Barigozzi, G., Benzoni, G., & Franchini, G., et al. (2005). Fan-shaped hole effects on the aero-thermal performance of a film cooled endwall [R]. ASMEGT2005-68544. Barigozzi, G., Benzoni, G., & Franchini, G., et al. (2005). Fan-shaped hole effects on the aero-thermal performance of a film cooled endwall [R]. ASMEGT2005-68544.
55.
go back to reference Wang, C. Z., de J. F., & Johnson, B. V., et al. (2007). Comparison of flow characteristics in axial-gap seals for close and wide-spaced turbine stages [R]. ASMEGT2007-27909. Wang, C. Z., de J. F., & Johnson, B. V., et al. (2007). Comparison of flow characteristics in axial-gap seals for close and wide-spaced turbine stages [R]. ASMEGT2007-27909.
56.
go back to reference McLean, C., Camci, C., & Glezer, B. (2001). Mainstreamaerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage: Part I—Aerodynamic measurements in the stationary frame [J]. Journal of Turbomachinery, 123(4), 687–696.CrossRef McLean, C., Camci, C., & Glezer, B. (2001). Mainstreamaerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage: Part I—Aerodynamic measurements in the stationary frame [J]. Journal of Turbomachinery, 123(4), 687–696.CrossRef
57.
go back to reference Burd, S. W., Satterness, C. J., & Simon T. W. (2000). Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance: Part II—thermal measurements [R]. ASME Paper 2000-GT-200. Burd, S. W., Satterness, C. J., & Simon T. W. (2000). Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance: Part II—thermal measurements [R]. ASME Paper 2000-GT-200.
58.
go back to reference Denos, P. (2002). Influence of the hubendwall cavity flow on the time-averaged and time-resolved aero-thermodynamics of axial HP turbine stage [R]. ASME GT-2002-30185. Denos, P. (2002). Influence of the hubendwall cavity flow on the time-averaged and time-resolved aero-thermodynamics of axial HP turbine stage [R]. ASME GT-2002-30185.
59.
go back to reference Wright, L. M., Gao, Z., Yang, H., et al. (2008). Film cooling effectiveness distribution on a gas turbineblade platform with inclined slot leakage and discrete filmhole flows [J]. Journal of Heat Transfer, 130, 071702.CrossRef Wright, L. M., Gao, Z., Yang, H., et al. (2008). Film cooling effectiveness distribution on a gas turbineblade platform with inclined slot leakage and discrete filmhole flows [J]. Journal of Heat Transfer, 130, 071702.CrossRef
60.
go back to reference Bunker, R., Ledezma, G. A., & Laskowski, G. M. (2011). An investigation of turbine rim sealflow interactions with a transonic hot gas path [R]. ISABE-2011-1834. Bunker, R., Ledezma, G. A., & Laskowski, G. M. (2011). An investigation of turbine rim sealflow interactions with a transonic hot gas path [R]. ISABE-2011-1834.
61.
go back to reference Popović, I., & Hodson, H. P. (2010). Aerothermal impact of the interaction between hubleakage and mainstream flows in highly-loaded HP turbineblades [R]. ASMEGT2010-22311. Popović, I., & Hodson, H. P. (2010). Aerothermal impact of the interaction between hubleakage and mainstream flows in highly-loaded HP turbineblades [R]. ASMEGT2010-22311.
62.
go back to reference Ryan, D., Erickson, T. W., & Simon, L., et al. (2011). Experimental investigation of disccacity leakage flow and hubendwall contouring in a linear rotor cascade [R]. ASMEGT2011-46760. Ryan, D., Erickson, T. W., & Simon, L., et al. (2011). Experimental investigation of disccacity leakage flow and hubendwall contouring in a linear rotor cascade [R]. ASMEGT2011-46760.
63.
go back to reference Popović, I., & Hodson, H. P. (2013). Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry [J]. Journal of Turbomachinery, 135, 061016.CrossRef Popović, I., & Hodson, H. P. (2013). Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry [J]. Journal of Turbomachinery, 135, 061016.CrossRef
64.
go back to reference Denton, J.D., & Johnson, C.G. (1976). An experimental study of the tip leakage flow around shrouded turbine blades[R]. CEGB Report No R/M/N848, Marchwood Engineering Laboratories. Denton, J.D., & Johnson, C.G. (1976). An experimental study of the tip leakage flow around shrouded turbine blades[R]. CEGB Report No R/M/N848, Marchwood Engineering Laboratories.
Metadata
Title
Flow Mechanism in High Pressure Turbines
Authors
Zhengping Zou
Songtao Wang
Huoxing Liu
Weihao Zhang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5750-2_2

Premium Partner