Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Flow Mechanism in Inter Turbine Ducts

Authors : Zhengping Zou, Songtao Wang, Huoxing Liu, Weihao Zhang

Published in: Axial Turbine Aerodynamics for Aero-engines

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the main flow passage of aero gas turbines, the channel connecting the high-pressure stage and low-pressure stage is generally called inter-turbine duct (ITD). The inter-turbine duct mainly serves as a flow passage, which is formed by the casing and hub, and in some occasions, the duct, together with guide vanes, also serves as a supporter and pathway of accessory pipelines. In geometry, the inter-turbine duct is an annular pipe with its two ends having different diameters; the end connecting to the high-pressure turbine is its inlet, and the other end, which connects to the low-pressure turbine, is its outlet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aviation Industry Corporation of China. (2010). Advanced technology analysis of LEAP-X engine [R]. Beijing: China Aviation Industry Development Research Center. Aviation Industry Corporation of China. (2010). Advanced technology analysis of LEAP-X engine [R]. Beijing: China Aviation Industry Development Research Center.
3.
go back to reference Pratt & Whitney PW1000G. (2008). Jane’s aero engine [M]. Pratt & Whitney PW1000G. (2008). Jane’s aero engine [M].
4.
go back to reference Kline, S. J., Abbott, D. E., & Fox, R. W. (1958). Optimum design of straight walled diffusers [M]. Stanford: Department of Mechanical Engineering, Stanford University. Kline, S. J., Abbott, D. E., & Fox, R. W. (1958). Optimum design of straight walled diffusers [M]. Stanford: Department of Mechanical Engineering, Stanford University.
5.
go back to reference Zhang, X. F., Hu, S., & Benner, M., et al. (2010). Experimental and numerical study on an inter-turbine duct [R]. ASME Paper IMECE2010-37322. Zhang, X. F., Hu, S., & Benner, M., et al. (2010). Experimental and numerical study on an inter-turbine duct [R]. ASME Paper IMECE2010-37322.
6.
go back to reference Kuchana, V., Guntu, S., & Srinivasan, B., et al. (2013). Numerical study on inter-turbine ducts with variable curvature distribution [R]. AIAA Paper 2013-3686. Kuchana, V., Guntu, S., & Srinivasan, B., et al. (2013). Numerical study on inter-turbine ducts with variable curvature distribution [R]. AIAA Paper 2013-3686.
7.
go back to reference Norris, G., & Dominy, R. G. (1997). Diffusion rate influences on inter-turbine diffusers [J]. Journal of Power and Energy, 211(3), 235–242.CrossRef Norris, G., & Dominy, R. G. (1997). Diffusion rate influences on inter-turbine diffusers [J]. Journal of Power and Energy, 211(3), 235–242.CrossRef
8.
go back to reference Norris, G. (1998). Flows through S-shaped annular, inter-turbine diffusers [D]. Durham University. Norris, G. (1998). Flows through S-shaped annular, inter-turbine diffusers [D]. Durham University.
9.
go back to reference Norris, G., Dominy, R. G., & Smith, A. D., et al. (1999). Flow stability within a diffusing, annular s-shaped duct [M]. Rolls-Royce PLC. Norris, G., Dominy, R. G., & Smith, A. D., et al. (1999). Flow stability within a diffusing, annular s-shaped duct [M]. Rolls-Royce PLC.
10.
go back to reference Naylor, E. M. J., Dueñas, C. O., Miller, R. J., et al. (2010). Optimization of nonaxisymmetric endwalls in compressor S-shaped ducts[J]. Journal of Turbomachinery, 132, 011011.CrossRef Naylor, E. M. J., Dueñas, C. O., Miller, R. J., et al. (2010). Optimization of nonaxisymmetric endwalls in compressor S-shaped ducts[J]. Journal of Turbomachinery, 132, 011011.CrossRef
11.
go back to reference Huoxing, L. (2012). Experimental study on aggressive inter-turbine duct with strut fairings [R]. Beijing: Beihang University. Huoxing, L. (2012). Experimental study on aggressive inter-turbine duct with strut fairings [R]. Beijing: Beihang University.
12.
go back to reference Göttlich, E., Marn, A., & Malzacher, F. J., et al. (2007). Experimental investigation of the flow through an aggressive intermediate turbine duct downstream of a transonic turbine stage [C]. In Proceedings of 7th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 2007. Göttlich, E., Marn, A., & Malzacher, F. J., et al. (2007). Experimental investigation of the flow through an aggressive intermediate turbine duct downstream of a transonic turbine stage [C]. In Proceedings of 7th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 2007.
13.
go back to reference Shuzhen, Hu. (2012). Flow mechanism and flow control investigation within inter-turbine duct [D]. Beijing: Graduate School of Chinese Academy of Sciences (Engineering Thermophysics). Shuzhen, Hu. (2012). Flow mechanism and flow control investigation within inter-turbine duct [D]. Beijing: Graduate School of Chinese Academy of Sciences (Engineering Thermophysics).
14.
go back to reference Bradshaw, P. (1973). Effects of streamline curvature on turbulent flow [R]. Paris (France): Advisory Group for Aerospace Research and Development. Bradshaw, P. (1973). Effects of streamline curvature on turbulent flow [R]. Paris (France): Advisory Group for Aerospace Research and Development.
15.
go back to reference Dominy, R. G., & Kirkham, D. A. (1995). The influence of swirl on the performance of inter-turbine diffusers [J]. Rolls Royce PLC-Report-PNR. Dominy, R. G., & Kirkham, D. A. (1995). The influence of swirl on the performance of inter-turbine diffusers [J]. Rolls Royce PLC-Report-PNR.
16.
go back to reference Dominy, R. G., & Kirkham, D. A. (1996). The influence of blade wakes on the performance of inter-turbine diffusers [J]. Journal of Turbomachinery, 118(2), 347–352.CrossRef Dominy, R. G., & Kirkham, D. A. (1996). The influence of blade wakes on the performance of inter-turbine diffusers [J]. Journal of Turbomachinery, 118(2), 347–352.CrossRef
17.
go back to reference Wendt, B. J., & Reichert, B. A. (1996). Vortex ingestion in a diffusing S-duct inlet [J]. Journal of Aircraft, 33(1), 149–154.CrossRef Wendt, B. J., & Reichert, B. A. (1996). Vortex ingestion in a diffusing S-duct inlet [J]. Journal of Aircraft, 33(1), 149–154.CrossRef
18.
go back to reference Miller, R. J., Moss, R. W., & Ainsworth, R. W., et al. (2003). The development of turbine exit flow in a swan-necked inter-stage diffuser [R]. ASME Paper GT2003-38174. Miller, R. J., Moss, R. W., & Ainsworth, R. W., et al. (2003). The development of turbine exit flow in a swan-necked inter-stage diffuser [R]. ASME Paper GT2003-38174.
19.
go back to reference Göttlich, E., Marn, A., Pecnik, R., & Malzacher, F. J., et al. (2007). The influence of blade tip gap variation on the flow through an aggressive S-shaped intermediate turbine duct downstream of a transonic turbine stage—Part II: time-averaged results and surface flow [R]. ASME Paper GT2007-28069. Göttlich, E., Marn, A., Pecnik, R., & Malzacher, F. J., et al. (2007). The influence of blade tip gap variation on the flow through an aggressive S-shaped intermediate turbine duct downstream of a transonic turbine stage—Part II: time-averaged results and surface flow [R]. ASME Paper GT2007-28069.
20.
go back to reference Wallin, F., & Eriksson, L. E. (2006). Response surface-based transition duct shape optimization [R]. ASME Paper GT2006-90978. Wallin, F., & Eriksson, L. E. (2006). Response surface-based transition duct shape optimization [R]. ASME Paper GT2006-90978.
21.
go back to reference Axelsson, L. U., Osso, C. A., & Cadrecha, D., et al. (2007). Design, performance evaluation and endwall flow structure investigation of an S-shaped intermediate turbine duct [R]. ASME Paper GT2007-27650. Axelsson, L. U., Osso, C. A., & Cadrecha, D., et al. (2007). Design, performance evaluation and endwall flow structure investigation of an S-shaped intermediate turbine duct [R]. ASME Paper GT2007-27650.
22.
go back to reference Marn, A., Gottlich, E., & Pecnik, R., et al. (2007). The influence of blade tip gap variation on the flow through an aggressive S-shaped intermediate turbine duct downstream a transonic turbine stage: Part I—time-averaged results [R]. ASME Paper GT2007-27405. Marn, A., Gottlich, E., & Pecnik, R., et al. (2007). The influence of blade tip gap variation on the flow through an aggressive S-shaped intermediate turbine duct downstream a transonic turbine stage: Part I—time-averaged results [R]. ASME Paper GT2007-27405.
23.
go back to reference Sanz, W., Kelterer, M., & Pecnik, R., et al. (2009). Numerical investigation of the effect of tip leakage flow on an aggressive S-shaped intermediate turbine duct [R]. ASME Paper GT2009-59535. Sanz, W., Kelterer, M., & Pecnik, R., et al. (2009). Numerical investigation of the effect of tip leakage flow on an aggressive S-shaped intermediate turbine duct [R]. ASME Paper GT2009-59535.
24.
go back to reference Marn, A. (2008). On the aerodynamics of aggressive intermediate turbine ducts for competitive and environmentally friendly jet engines [M]. NA. Marn, A. (2008). On the aerodynamics of aggressive intermediate turbine ducts for competitive and environmentally friendly jet engines [M]. NA.
25.
go back to reference Sovran, G., & Klomp, E. D. (1967). Experimentally determined optimum geometries for rectilinear diffusers with rectangular, conical or annular cross-section [J]. Fluid Mechanics of Internal Flow, 270–319. Sovran, G., & Klomp, E. D. (1967). Experimentally determined optimum geometries for rectilinear diffusers with rectangular, conical or annular cross-section [J]. Fluid Mechanics of Internal Flow, 270–319.
26.
go back to reference Couey, P. T., McKeever, C. W., & Malak, M. F., et al. (2010). Computational study of geometric parameter influence on aggressive inter-turbine duct performance [R]. ASME Paper GT2010-23604. Couey, P. T., McKeever, C. W., & Malak, M. F., et al. (2010). Computational study of geometric parameter influence on aggressive inter-turbine duct performance [R]. ASME Paper GT2010-23604.
27.
go back to reference Zhang, X. F., Hu, S., & Benner, M., et al. (2010). Experimental and numerical study on an inter-turbine duct [R]. ASME Paper IMECE 2010-37322. Zhang, X. F., Hu, S., & Benner, M., et al. (2010). Experimental and numerical study on an inter-turbine duct [R]. ASME Paper IMECE 2010-37322.
28.
go back to reference Hu, S., Zhang, X. F., Benner, M., et al. (2010). Geometric optimization of aggressive inter-turbine ducts [R]. ASME Paper IMECE 2010-37323. Hu, S., Zhang, X. F., Benner, M., et al. (2010). Geometric optimization of aggressive inter-turbine ducts [R]. ASME Paper IMECE 2010-37323.
29.
go back to reference Zou, Z. (2011). Aerodynamic design for low pressure turbine of a turbofan engine [R]. Beijing: Beihang University. Zou, Z. (2011). Aerodynamic design for low pressure turbine of a turbofan engine [R]. Beijing: Beihang University.
30.
go back to reference Florea, R., Bertuccioli, L., & Tillman, G. (2007). Flow-control-enabled aggressive turbine transition ducts and engine system analysis [J]. Journal of Propulsion and Power, 23(4), 797–803.CrossRef Florea, R., Bertuccioli, L., & Tillman, G. (2007). Flow-control-enabled aggressive turbine transition ducts and engine system analysis [J]. Journal of Propulsion and Power, 23(4), 797–803.CrossRef
31.
go back to reference Zhang, Y., Hu, S., & Zhang, X. F., et al. (2012). Flow control in an aggressive inter-turbine duct using low profile vortex generators [R]. ASME Paper GT2012-69951. Zhang, Y., Hu, S., & Zhang, X. F., et al. (2012). Flow control in an aggressive inter-turbine duct using low profile vortex generators [R]. ASME Paper GT2012-69951.
32.
go back to reference Du, Q., Wang, P., Gong, J. B., et al. (2012). Design performance evaluation and vortex structure investigation of different S-shaped intermediate turbine ducts [J]. Science China Technological Sciences, 55(12), 3510–3520.CrossRef Du, Q., Wang, P., Gong, J. B., et al. (2012). Design performance evaluation and vortex structure investigation of different S-shaped intermediate turbine ducts [J]. Science China Technological Sciences, 55(12), 3510–3520.CrossRef
Metadata
Title
Flow Mechanism in Inter Turbine Ducts
Authors
Zhengping Zou
Songtao Wang
Huoxing Liu
Weihao Zhang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5750-2_3

Premium Partner