Skip to main content
Top

2012 | OriginalPaper | Chapter

4. Fluid Dynamics

Author : Rainer Kimmich

Published in: Principles of Soft-Matter Dynamics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Treatments of molecular dynamics in general and especially if they are based on Langevin equations of motions are hardly possible without referring to hydrodynamics. Basic hydrodynamic concepts such as Stokes’ friction law of particles in a viscous medium are ubiquitously employed in molecular dynamics. The present treatise is unique in the sense that it juxtaposes the principles of the analytical formalism in the form of computer simulations with real experiments. If the topology of objects is known or predetermined by suitable sample preparations, hydrodynamics can be simulated and measured under identical conditions. This option opens a promising application field of utmost importance for chemical engineering. The term fluid dynamics is moreover understood in a generalized sense. Apart from pressure-driven flow, a wealth of related transport phenomena will be addressed in this chapter. The scope covers examples as different as the spatially resolved probing of thermal convection, heat conduction, electroosmosis, and ionic currents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that the transport uniformity refers in principle to uncoupled particles here. This is in contrast to the less stringent version of coherence, namely, collective relaxation modes, that will be discussed in Chap.​ 5 (polymer dynamics) and in Chap.​ 6 (dynamics in liquid crystals). The coherence is then a consequence of chain connectivity and interactions among molecular entities.
 
2
A more detailed and modified picture of the conditions at fluid–surface interfaces will be outlined in Sect. 7.5.7 in the context of the NMR flow-relaxation effect.
 
3
The (total) differential operator \( {{{\rm d}} \left/ {{{\rm d}t}} \right.} \) refers to derivations by implicit as well as by explicit time dependences, whereas the partial derivative \( {{\partial } \left/ {{\partial t}} \right.} \) is restricted to explicit time dependences only.
 
4
As already mentioned in Sect. 2.3.4, fluids with a viscosity \( \eta \) independent of the shear rate are called Newtonian liquids. This is what we anticipate here and in the following. In contrast to this ordinary viscous behavior, one distinguishes shear thinning and shear thickening in cases where the viscosity decreases or increases with the shear rate, respectively. Respective examples are blood and granular suspensions. In some relatively exotic systems, the viscosity may also increase or decrease with the duration of the applied stress. One then speaks of rheopectic and thixotropic fluids, respectively. Usually, these are extremely viscous materials.
 
5
In principle, a velocity potential can also be introduced for the description of irrotational flow of compressible fluids. The formalism is however much more complicated [3].
 
6
Details of the conversion to spherical coordinates can be found in mathematical-physics textbooks such as Ref. [4], for instance.
 
7
These results can be cross-checked by inserting them in Eqs. (4.49) and (4.47). However, the expressions to be handled tend to be extremely lengthy. It may therefore be recommendable to employ a computer algebra software package for this endeavor.
 
8
In gaseous media where the finite compressibility needs to be taken into account, it may be necessary to add a further diagonal term of the form \( \lambda \left( {\nabla \cdot {v}} \right){{\delta}_{{ik}}} \) with \( \lambda \) the second viscosity coefficient analogous to the first Lamé constant [1].
 
9
The thermal conductivity \( \kappa \) (SI unit: Wm−1 K−1) must be distinguished from the thermal diffusivity \( \alpha = \kappa /\left( {\rho {{c}_v}} \right) \) (SI unit: m2s−1), where \( \rho \) is the mass density (SI unit: kg m−3) and \( {{c}_v} \) is the specific heat at constant volume (Si unit: J kg−1 K−1).
 
10
Turbulent fluctuations would also contribute to this process.
 
11
Equation (4.87) coincides with the equation of creeping motion, Eq. (4.43).
 
12
Actually, the pore space assumed here corresponds to an Ising-correlated percolation cluster with a porosity of 0.5672 which is above the percolation threshold. According to Ref. [15], the percolation threshold of this sort of network is somewhat lower than in ordinary random-site percolation clusters.
 
13
Note, however, that the non-slipping boundary condition \( {{v}_{{\rm electrodes}}} = 0 \) must be assumed at the surfaces of the electrodes in closed systems blocking any in- and outflow. This is in contrast to open systems defined by unrestricted flow across the electrode boundaries.
 
14
As before, quasi-two-dimensional means that the pore space is restricted to a thin layer, the thickness of which is negligible relative to the lateral extension.
 
Literature
1.
go back to reference Tritton DJ (1988) Physical fluid dynamics. Clarendon, Oxford Tritton DJ (1988) Physical fluid dynamics. Clarendon, Oxford
2.
go back to reference Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef
3.
go back to reference Anderson JD (2002) Modern compressible flow. McGraw-Hill, New York Anderson JD (2002) Modern compressible flow. McGraw-Hill, New York
4.
go back to reference Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic, San Diego Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic, San Diego
5.
go back to reference Anderson JD jr (1995) Computational fluid dynamics. McGraw-Hill, New York Anderson JD jr (1995) Computational fluid dynamics. McGraw-Hill, New York
6.
go back to reference Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York
9.
go back to reference Klemm A, Müller H-P, Kimmich R (1997) Phys Rev 55:4413 Klemm A, Müller H-P, Kimmich R (1997) Phys Rev 55:4413
10.
go back to reference Codd SL, Seymour JD (eds) (2009) Magnetic resonance microscopy. Wiley-VCH, Weinheim Codd SL, Seymour JD (eds) (2009) Magnetic resonance microscopy. Wiley-VCH, Weinheim
11.
go back to reference Stapf S, Han S-I (eds) (2006) NMR imaging in chemical engineering. Wiley-VCH, Weinheim Stapf S, Han S-I (eds) (2006) NMR imaging in chemical engineering. Wiley-VCH, Weinheim
13.
go back to reference Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London
14.
go back to reference Bunde A, Havlin S (eds) (1996) Fractals and disordered systems. Springer, Berlin Bunde A, Havlin S (eds) (1996) Fractals and disordered systems. Springer, Berlin
16.
go back to reference Klemm A, Kimmich R, Weber M (2001) Phys Rev E63:041514 Klemm A, Kimmich R, Weber M (2001) Phys Rev E63:041514
18.
go back to reference Madou M (1997) Fundamentals of microfabrication. CRC Press, Boca Raton Madou M (1997) Fundamentals of microfabrication. CRC Press, Boca Raton
20.
22.
go back to reference Buhai B, Li Y, Kimmich R (2009) In: Codd SL, Seymour JD (eds) Magnetic resonance microscopy. Wiley-VCH, Weinheim, p 197 Buhai B, Li Y, Kimmich R (2009) In: Codd SL, Seymour JD (eds) Magnetic resonance microscopy. Wiley-VCH, Weinheim, p 197
23.
24.
go back to reference Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, Weinheim Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, Weinheim
25.
26.
27.
28.
go back to reference Kossel E, Buhai B, Kimmich R (2006) In: Stapf S, Han S-I (eds) NMR imaging in chemical engineering. Wiley-VCH, Weinheim, p 205CrossRef Kossel E, Buhai B, Kimmich R (2006) In: Stapf S, Han S-I (eds) NMR imaging in chemical engineering. Wiley-VCH, Weinheim, p 205CrossRef
29.
go back to reference Li Y, Farrher G, Kimmich R (2006) Phys Rev E74:066309 Li Y, Farrher G, Kimmich R (2006) Phys Rev E74:066309
30.
go back to reference Kimmich R, Fatkullin N, Kehr M, Li Y (2008) In: Klages R, Radons G, Sokolov IM (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, p 485 Kimmich R, Fatkullin N, Kehr M, Li Y (2008) In: Klages R, Radons G, Sokolov IM (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, p 485
37.
38.
go back to reference Nield DA, Bejan A (1992) Convection in porous media. Springer, Berlin Nield DA, Bejan A (1992) Convection in porous media. Springer, Berlin
40.
go back to reference Li D (2004) Electrokinetics in microfluidics. Elsevier, Amsterdam Li D (2004) Electrokinetics in microfluidics. Elsevier, Amsterdam
44.
Metadata
Title
Fluid Dynamics
Author
Rainer Kimmich
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-5536-9_4