Skip to main content
Top

2014 | OriginalPaper | Chapter

7. Fluid Pressure and Failure Modes of Sandstones

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The existence of the fractures and fluids in the rocks, together with the associated pore pressures can cause significant changes of rock properties. The role of fluids, their interaction with microstructure, and their influence on the internal stresses and pressures in a rock are all important when considering partially molten rocks, as well as when understanding porous rocks (e.g. sediments) in reservoir settings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rubin, A. M. (1993). Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research, 98(B9), 15919–15935.CrossRef Rubin, A. M. (1993). Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research, 98(B9), 15919–15935.CrossRef
2.
go back to reference White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3–4), 300–312.CrossRef White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3–4), 300–312.CrossRef
3.
go back to reference Mukerji, T., Dutta, N., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part I: The rock physics basis. Canadian Society of Exploration Geophysicists Recorder, 27, 36–57. Mukerji, T., Dutta, N., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part I: The rock physics basis. Canadian Society of Exploration Geophysicists Recorder, 27, 36–57.
4.
go back to reference Dutta, N., Mukerji, T., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part II: Field applications. Canadian Society of Exploration Geophysicists Recorder, 27 59–73. Dutta, N., Mukerji, T., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part II: Field applications. Canadian Society of Exploration Geophysicists Recorder, 27 59–73.
5.
go back to reference Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review Of Earth And Planetary Sciences, 23, 287–336.CrossRef Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review Of Earth And Planetary Sciences, 23, 287–336.CrossRef
6.
go back to reference Xu, X., Hofmann, R., Batzle, M., & Tshering, T. (2006). Influence of pore pressure on velocity in low-porosity sandstone: Implications for time-lapse feasibility and pore-pressure study. Geophysical Prospecting, 54(5), 565–573.CrossRef Xu, X., Hofmann, R., Batzle, M., & Tshering, T. (2006). Influence of pore pressure on velocity in low-porosity sandstone: Implications for time-lapse feasibility and pore-pressure study. Geophysical Prospecting, 54(5), 565–573.CrossRef
7.
go back to reference Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 319(1549), 337–374. Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 319(1549), 337–374.
8.
go back to reference Baud, P., Zhu, W., & Wong, T. -f. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research, 105(B7), 16371–16389. Baud, P., Zhu, W., & Wong, T. -f. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research, 105(B7), 16371–16389.
9.
go back to reference Zhang, J., Wong, T. -F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1), 341–352. Zhang, J., Wong, T. -F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1), 341–352.
10.
go back to reference Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic p- and s-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186.CrossRef Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic p- and s-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186.CrossRef
11.
go back to reference King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef
12.
go back to reference Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef
13.
go back to reference Waza, T., Kurita, K., & Mizutani, H. (1980). The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics, 67(1–2), 25–34.CrossRef Waza, T., Kurita, K., & Mizutani, H. (1980). The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics, 67(1–2), 25–34.CrossRef
14.
go back to reference Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie, 132, 105–124. Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie, 132, 105–124.
15.
go back to reference Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601. Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.
16.
go back to reference Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rrocks. Journal of Geophysical Research, 77(20), 3731–3743.CrossRef Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rrocks. Journal of Geophysical Research, 77(20), 3731–3743.CrossRef
17.
go back to reference Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.CrossRef Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.CrossRef
18.
go back to reference Vasquez, G. F., Vargas Junior, Ed A, Ribeiro, C. J. B., Leão, M., & Justen, J. C. R. (2009). Experimental determination of the effective pressure coefficients for brazilian limestones and sandstones. Revista Brasileira de Geofísica, 27(1), 43–53.CrossRef Vasquez, G. F., Vargas Junior, Ed A, Ribeiro, C. J. B., Leão, M., & Justen, J. C. R. (2009). Experimental determination of the effective pressure coefficients for brazilian limestones and sandstones. Revista Brasileira de Geofísica, 27(1), 43–53.CrossRef
19.
go back to reference Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef
20.
go back to reference Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef
21.
go back to reference Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics, 62(4), 1163–1176.CrossRef Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics, 62(4), 1163–1176.CrossRef
22.
go back to reference Christensen, N. I., & Wang, H. F. (1985). The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone. Geophysics, 50(2), 207–213.CrossRef Christensen, N. I., & Wang, H. F. (1985). The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone. Geophysics, 50(2), 207–213.CrossRef
23.
go back to reference Gardner, G. H. F., Wyllie, M. R. J., & Droschak, D. M. (1965). Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, 30(1), 111–116.CrossRef Gardner, G. H. F., Wyllie, M. R. J., & Droschak, D. M. (1965). Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, 30(1), 111–116.CrossRef
24.
go back to reference Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a gulf coast pleistocene basin. Geology, 23(1), 45–48.CrossRef Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a gulf coast pleistocene basin. Geology, 23(1), 45–48.CrossRef
25.
go back to reference Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.CrossRef Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.CrossRef
26.
go back to reference Hatchell, P., & Bourne, S. (2005). Rocks under strain. The Leading Edge, 24(12), 1222–1225.CrossRef Hatchell, P., & Bourne, S. (2005). Rocks under strain. The Leading Edge, 24(12), 1222–1225.CrossRef
27.
go back to reference Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151(2), 427–451.CrossRef Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151(2), 427–451.CrossRef
28.
go back to reference Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.CrossRef Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.CrossRef
29.
go back to reference O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, 82(36), 5719–5735.CrossRef O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, 82(36), 5719–5735.CrossRef
30.
go back to reference Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letter, 6(1), 1–4.CrossRef Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letter, 6(1), 1–4.CrossRef
31.
go back to reference Gassmann, F. (1951b). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23. Gassmann, F. (1951b). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
32.
go back to reference Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letter, 30(2), 1089.CrossRef Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letter, 30(2), 1089.CrossRef
33.
go back to reference Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.CrossRef Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.CrossRef
34.
go back to reference Al-Wardy, W., & Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, 109(B4), B04203. Al-Wardy, W., & Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, 109(B4), B04203.
35.
go back to reference Wong, T-f, David, C., & Zhu, W. (1997). he transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research, 102(B2), 3009–3025.CrossRef Wong, T-f, David, C., & Zhu, W. (1997). he transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research, 102(B2), 3009–3025.CrossRef
36.
go back to reference Nur, A., & Simmons, G. (1969). The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 99–108.CrossRef Nur, A., & Simmons, G. (1969). The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 99–108.CrossRef
37.
go back to reference Lu, C., & Jackson, I. (2006). Low-frequency seismic properties of thermally cracked and argon-saturated granite. Geophysics, 71(6), F147–F159.CrossRef Lu, C., & Jackson, I. (2006). Low-frequency seismic properties of thermally cracked and argon-saturated granite. Geophysics, 71(6), F147–F159.CrossRef
38.
go back to reference Mavko, G., & Vanorio, T. (2010). The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics, 75(1), N1–N7.CrossRef Mavko, G., & Vanorio, T. (2010). The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics, 75(1), N1–N7.CrossRef
Metadata
Title
Fluid Pressure and Failure Modes of Sandstones
Author
Su-Ying Chien
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-03098-2_7