Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2020

10-04-2020 | Research Paper

Fluid–structure interaction in Z-shaped pipe with different supports

Authors: Q. Guo, J. X. Zhou, X. L. Guan

Published in: Acta Mechanica Sinica | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fluid–structure interaction (FSI) has a strong relation with layout of fluid delivery system. FSI is liable to cause local damage. Thus, FSI analysis is necessary in many cases, especially for flexible pipe systems. FSI modeling consists of eight governing equations and then completely solved via the finite volume method (FVM). Friction, Poisson and joint couplings were discussed in detail to reveal the influence of a Z-shaped pipe with different supports and elbows on FSI. After the feasibility of solving FSI by FVM was verified, the different effects of free, fixed and elastic supports on FSI in the commonly used and simplified Z-shaped pipe were further analyzed. Results indicated that different support stiffness lead to various FSI responses. If coupling occurs at the elbow and less support is considered, then the pipe has a relatively large amplitude and complex pressure fluctuation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Olalla, G., SasIrene, D., Begoña, G.: Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim] FSI. J. Environ. Manag. 78, 475–482 (2018) Olalla, G., SasIrene, D., Begoña, G.: Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim] FSI. J. Environ. Manag. 78, 475–482 (2018)
2.
go back to reference Osama, M., Theofilis, V., Ahmed, E.: Fluid structure interaction (FSI) simulation of the human eye under the air puff tonometry using computational fluid dynamics (CFD). Tenth International Conference on Computational Fluid Dynamic (ICCFD) Barcelona, Spain, 9-13 July 2018. Osama, M., Theofilis, V., Ahmed, E.: Fluid structure interaction (FSI) simulation of the human eye under the air puff tonometry using computational fluid dynamics (CFD). Tenth International Conference on Computational Fluid Dynamic (ICCFD) Barcelona, Spain, 9-13 July 2018.
3.
go back to reference Bazilevs, Y., Yan, J., Deng, X.: Simulating free-surface FSI and fatigue damage in wind-turbine structural systems, vol. 1, pp. 1–28 (2018) Bazilevs, Y., Yan, J., Deng, X.: Simulating free-surface FSI and fatigue damage in wind-turbine structural systems, vol. 1, pp. 1–28 (2018)
4.
go back to reference Banks, J.W., Henshaw, W.D., Schwen, D.W.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions. J. Comput. Phys. 73, 455–492 (2018)MathSciNetCrossRef Banks, J.W., Henshaw, W.D., Schwen, D.W.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions. J. Comput. Phys. 73, 455–492 (2018)MathSciNetCrossRef
5.
go back to reference Casadei, F., Halleux, J.P., Sala, A., et al.: Transient fluid–structure interaction algorithms for large industrial applications. Comput. Methods Appl. Mech. Eng. 190, 3081–3110 (2001)CrossRef Casadei, F., Halleux, J.P., Sala, A., et al.: Transient fluid–structure interaction algorithms for large industrial applications. Comput. Methods Appl. Mech. Eng. 190, 3081–3110 (2001)CrossRef
6.
go back to reference Zhang, L.X., Huang, W.H., Tijsseling, A.S.: Vibration spectrum analysis of fluid solid coupling induced by water hammer in weakly restrained pipes. Eng. Mech. 17, 1–12 (2000) Zhang, L.X., Huang, W.H., Tijsseling, A.S.: Vibration spectrum analysis of fluid solid coupling induced by water hammer in weakly restrained pipes. Eng. Mech. 17, 1–12 (2000)
7.
go back to reference Liu, Z.Y., Jiang, T.L., Wang, L., et al.: Nonplanar flow-induced vibrations of a cantilevered pipe-in-pipe structure system concurrently subjected to internal and cross flows. Acta. Mech. Sin. 38, 1208–1218 (2018) Liu, Z.Y., Jiang, T.L., Wang, L., et al.: Nonplanar flow-induced vibrations of a cantilevered pipe-in-pipe structure system concurrently subjected to internal and cross flows. Acta. Mech. Sin. 38, 1208–1218 (2018)
8.
go back to reference Toshiyuki, N., Ryusuke, N., Shinobu, K., et al.: A simulation-based study on longitudinal gust response of flexible flapping wings. Acta. Mech. Sin. 34, 1048–1060 (2018)CrossRef Toshiyuki, N., Ryusuke, N., Shinobu, K., et al.: A simulation-based study on longitudinal gust response of flexible flapping wings. Acta. Mech. Sin. 34, 1048–1060 (2018)CrossRef
9.
go back to reference Ansari, R., Gholami, R., Norouzzadehl, A., et al.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam mode. Acta. Mech. Sin. 31, 708–719 (2015)MathSciNetCrossRef Ansari, R., Gholami, R., Norouzzadehl, A., et al.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam mode. Acta. Mech. Sin. 31, 708–719 (2015)MathSciNetCrossRef
10.
go back to reference Heinsbroek, A.G.T.J., Tijsseling, A.S.: The influence of support rigidity on water hammer pressures and pipe stresses. In: Proceedings of the 2nd BHR Group International Conference on Water Pipeline Systems, Edinburgh, UK, 24–26 (1994) Heinsbroek, A.G.T.J., Tijsseling, A.S.: The influence of support rigidity on water hammer pressures and pipe stresses. In: Proceedings of the 2nd BHR Group International Conference on Water Pipeline Systems, Edinburgh, UK, 24–26 (1994)
11.
go back to reference Zanganehan, R., Keramat, A.: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline. J. Fluids Struct. 54, 215–234 (2015)CrossRef Zanganehan, R., Keramat, A.: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline. J. Fluids Struct. 54, 215–234 (2015)CrossRef
12.
go back to reference Adamkowski, A., Henclik, S., Janicki, W., et al.: The influence of pipeline supports stiffness onto the water hammer run. Eur. J. Mech. B/Fluids. 61, 297–303 (2017)CrossRef Adamkowski, A., Henclik, S., Janicki, W., et al.: The influence of pipeline supports stiffness onto the water hammer run. Eur. J. Mech. B/Fluids. 61, 297–303 (2017)CrossRef
13.
go back to reference Henclik, S.: Numerical modeling of water hammer with fluid–structure interaction in a pipeline with viscoelastic supports. J. Fluids Struct. 76, 469–487 (2018)CrossRef Henclik, S.: Numerical modeling of water hammer with fluid–structure interaction in a pipeline with viscoelastic supports. J. Fluids Struct. 76, 469–487 (2018)CrossRef
14.
go back to reference Darocha, R.G., Rachid, F.B.D.: Numerical solution of fluid-structure interaction in piping systems by Glimm’s method. J. Fluids Struct. 28, 392–415 (2012)CrossRef Darocha, R.G., Rachid, F.B.D.: Numerical solution of fluid-structure interaction in piping systems by Glimm’s method. J. Fluids Struct. 28, 392–415 (2012)CrossRef
15.
go back to reference Li, Y.S., Han, X.D., Zhang, Y.H., et al.: Dynamical strength and design optimization of pipe-joint system under pressure impact load. J. Aerosp. Eng. 226, 1029–1040 (2011) Li, Y.S., Han, X.D., Zhang, Y.H., et al.: Dynamical strength and design optimization of pipe-joint system under pressure impact load. J. Aerosp. Eng. 226, 1029–1040 (2011)
16.
go back to reference Tijsseling, A.S., Vaugrante, P.: FSI in L-shaped and T-shaped pipe systems. In: Proceedings of the the 10th Int Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, vol. 6, (2001) Tijsseling, A.S., Vaugrante, P.: FSI in L-shaped and T-shaped pipe systems. In: Proceedings of the the 10th Int Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, vol. 6, (2001)
17.
go back to reference Davidson, L.C., Smith, J.E.: Liquid-structure coupling in curved pipes. Shock Vib. Bull. 40, 197–207 (1969) Davidson, L.C., Smith, J.E.: Liquid-structure coupling in curved pipes. Shock Vib. Bull. 40, 197–207 (1969)
18.
go back to reference Tijsseling, A.S, Vardy, A.E.: Twenty years of FSI experiments in Dundee. Third MIT Conference on Computational Fluid and Solid Mechanics, 1013-1017 (2005) Tijsseling, A.S, Vardy, A.E.: Twenty years of FSI experiments in Dundee. Third MIT Conference on Computational Fluid and Solid Mechanics, 1013-1017 (2005)
19.
go back to reference Covas, D., Stoianov, I., Mano, J., et al.: The dynamic effect of pipe-wall viscoelasticity on hydraulic transients, Part I: experimental analysis and creep characterization. J. Hydraul. Res. 42, 516–530 (2004)CrossRef Covas, D., Stoianov, I., Mano, J., et al.: The dynamic effect of pipe-wall viscoelasticity on hydraulic transients, Part I: experimental analysis and creep characterization. J. Hydraul. Res. 42, 516–530 (2004)CrossRef
20.
go back to reference Covas, D., Ivan, S.I., Mano, J., et al.: The dynamic miceffectof pipe-wall viscoelastic city in hydraulic transients. Part II-Model development, calibration and verification. J. Hydraul. Res. 43, 56–70 (2005)CrossRef Covas, D., Ivan, S.I., Mano, J., et al.: The dynamic miceffectof pipe-wall viscoelastic city in hydraulic transients. Part II-Model development, calibration and verification. J. Hydraul. Res. 43, 56–70 (2005)CrossRef
21.
go back to reference Lesmez, M.W., Wiggert, D.C., Hatfield, F.J.: Modal analysis of vibrations in liquid-filled piping systems. J. Fluids Eng. 112, 311–318 (1990)CrossRef Lesmez, M.W., Wiggert, D.C., Hatfield, F.J.: Modal analysis of vibrations in liquid-filled piping systems. J. Fluids Eng. 112, 311–318 (1990)CrossRef
22.
go back to reference Wiggert, D.C., Otwell, R.S., Hatfield, F.J.: The effect of elbow restraint on pressure transients. J. Fluids Eng. 107, 402–406 (1985)CrossRef Wiggert, D.C., Otwell, R.S., Hatfield, F.J.: The effect of elbow restraint on pressure transients. J. Fluids Eng. 107, 402–406 (1985)CrossRef
23.
go back to reference Tijsseling, A.S., Wiggert, D.C.: Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Department of Mathematics and Computing Science Eindhoven University of Technology, (2001) Tijsseling, A.S., Wiggert, D.C.: Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Department of Mathematics and Computing Science Eindhoven University of Technology, (2001)
24.
go back to reference Jin, B.T., Li, B.Y., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)MathSciNetCrossRef Jin, B.T., Li, B.Y., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)MathSciNetCrossRef
25.
go back to reference Xu, Y.Z., Johnston, D.N., Jiao, Z.X., et al.: Frequency modelling and solution of fluid–structure interaction in complex pipelines. J. Sound Vib. 333, 2800–2822 (2014)CrossRef Xu, Y.Z., Johnston, D.N., Jiao, Z.X., et al.: Frequency modelling and solution of fluid–structure interaction in complex pipelines. J. Sound Vib. 333, 2800–2822 (2014)CrossRef
26.
go back to reference Li, S.J., Karney, B.W., Liu, G.M.: FSI research in pipeline systems—a review of the literature. J. Fluids Struct. 57, 277–297 (2015)CrossRef Li, S.J., Karney, B.W., Liu, G.M.: FSI research in pipeline systems—a review of the literature. J. Fluids Struct. 57, 277–297 (2015)CrossRef
27.
go back to reference Ramírez, L., Nogueira, X., Ouro, P., et al.: A higher-order chimera method for finite volume schemes. Arch. Comput. Methods Eng. 25, 691–706 (2018)MathSciNetCrossRef Ramírez, L., Nogueira, X., Ouro, P., et al.: A higher-order chimera method for finite volume schemes. Arch. Comput. Methods Eng. 25, 691–706 (2018)MathSciNetCrossRef
28.
go back to reference Hwang, Y.H., Chung, N.M.: A fast Godunov method for the water-hammer problem. Int. J. Numer. Methods Fluids 40, 799–819 (2002)CrossRef Hwang, Y.H., Chung, N.M.: A fast Godunov method for the water-hammer problem. Int. J. Numer. Methods Fluids 40, 799–819 (2002)CrossRef
29.
go back to reference Tijsseling, A.S., Vardy, A.E., Fan, D.: Fluid-structure interaction and cavitation in a single-elbow pipe system. J. Fluids Struct. 10, 395–420 (1996)CrossRef Tijsseling, A.S., Vardy, A.E., Fan, D.: Fluid-structure interaction and cavitation in a single-elbow pipe system. J. Fluids Struct. 10, 395–420 (1996)CrossRef
30.
go back to reference Wylie, E.B., Streeter, V.L.: Fluid Transient in System. Prentice Hall, Englewood Cliff, NJ (1983) Wylie, E.B., Streeter, V.L.: Fluid Transient in System. Prentice Hall, Englewood Cliff, NJ (1983)
31.
go back to reference Ferras, D., Pedro, A., Manso, A.J., et al.: Fluid-structure interaction in straight pipelines with different anchoring conditions. J. Sound Vib. 394, 348–365 (2017)CrossRef Ferras, D., Pedro, A., Manso, A.J., et al.: Fluid-structure interaction in straight pipelines with different anchoring conditions. J. Sound Vib. 394, 348–365 (2017)CrossRef
Metadata
Title
Fluid–structure interaction in Z-shaped pipe with different supports
Authors
Q. Guo
J. X. Zhou
X. L. Guan
Publication date
10-04-2020
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2020
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00925-3

Other articles of this Issue 2/2020

Acta Mechanica Sinica 2/2020 Go to the issue

Premium Partners