Skip to main content
Top

28-11-2023 | Research Article-Civil Engineering

Fly Ash and BOF Slag as Sustainable Precursors for Engineered Geopolymer Composite (EGC) mixes: A Strength Optimization Study

Authors: Saravanan Subramanian, Tirumalasetty Dhathu Eswar, Vinay A Joseph, Sneha B Mathew, Robin Davis

Published in: Arabian Journal for Science and Engineering

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Engineered geopolymer composites (EGC) have emerged as a more environmentally friendly alternative to conventional engineered cementitious composites (ECC). These composites offer high mechanical and durability features. However, there is a lack of research on EGC, particularly with basic oxygen furnace (BOF) slag as a precursor and iron ore tailings (IOT) as a partial replacement to fine aggregate. Despite their effectiveness as industrial waste products in conventional concrete, this study aimed to determine the optimal compositions of fly ash (FA), steel fibres (SF), and IOT by varying their percentages. Overall, 150 mix combinations were tested, including six binder combinations, five combinations of fine aggregates, and five percentage variations in SF. Finally, one optimum mix was selected for each binder combination, based on the ultimate compressive strength values corresponding to the six optimal mixes. The compressive strengths of all the mixes were evaluated at both 7 and 28 days of curing, involving three replicate samples after oven curing (initial 24 h) followed by subsequent ambient curing until their respective ages. The highest observed compressive strength after 28 days was 41.77 MPa for 50 mm cubes. This strength was achieved with a composition of 60% FA, 1.5% SF, and 45% IOT. An increase in IOT percentage led to a nearly linear increase in strength, while the strength peaked at 1.5% for steel fibres. The addition of BOF slag significantly enhanced the compressive strength compared to mixes with full FA. A 40% fly ash replacement with BOF slag resulted in an average strength that was 39% higher than the combination with 100% fly ash. However, the strength growth decreased after a 10% replacement. Analysis of variance was conducted using the design of experiments methodology to determine the significance of the parameters and their interactions. All three independent parameters were found to be statistically significant, while their interactions were not. Utilizing Taguchi’s analysis method with the L25 orthogonal array, it was concluded that IOT percentage was the most influential parameter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D.: Basic oxygen furnace slag: review of current and potential uses. Miner. Eng. 149, 106 (2020)CrossRef Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D.: Basic oxygen furnace slag: review of current and potential uses. Miner. Eng. 149, 106 (2020)CrossRef
10.
go back to reference Helle, M.; Huitu, K.; Helle, H.; Kekkonen, M.; Saxén, H.: Optimization of steelmaking using fastmet DRI in the blast furnace 6th Int. Congress on the Science and Technology of Ironmaking 2012. In: ICSTI 2012 – Including Proceedings from the 42nd Ironmaking and Raw Materials Seminar, and the 13th Brazilian Symp. on Iron Ore 2. pp. 2038–2046 Helle, M.; Huitu, K.; Helle, H.; Kekkonen, M.; Saxén, H.: Optimization of steelmaking using fastmet DRI in the blast furnace 6th Int. Congress on the Science and Technology of Ironmaking 2012. In: ICSTI 2012 – Including Proceedings from the 42nd Ironmaking and Raw Materials Seminar, and the 13th Brazilian Symp. on Iron Ore 2. pp. 2038–2046
17.
go back to reference Central Electricity Authority Annual Report 2017–18, pp. 1–248. Ministry of Power, Govt of India (2018) Central Electricity Authority Annual Report 2017–18, pp. 1–248. Ministry of Power, Govt of India (2018)
21.
go back to reference Dolage, D.A.R.; Dias, M.G.S.; Ariyawansa, C.T.: Offshore sand as a fine aggregate for concrete production. Br. J. Appl. Sci. Technol. 3, 813–825 (2013)CrossRef Dolage, D.A.R.; Dias, M.G.S.; Ariyawansa, C.T.: Offshore sand as a fine aggregate for concrete production. Br. J. Appl. Sci. Technol. 3, 813–825 (2013)CrossRef
22.
go back to reference Devi, B.; Natesh, M.G.; Praveen, K.; Archana, N.; Sogi, A.: An experimental study on utilization of iron ore tailings (IOT) and waste glass powder in concrete. Civ. Environ. Res. 7, 18 (2015) Devi, B.; Natesh, M.G.; Praveen, K.; Archana, N.; Sogi, A.: An experimental study on utilization of iron ore tailings (IOT) and waste glass powder in concrete. Civ. Environ. Res. 7, 18 (2015)
24.
go back to reference Liu, W.B.; Yao, H.Y.; Wang, J.F.; Chen, C.M.; Liu, Y.T.: Current situation of comprehensive utilization of iron tailings. Mater. Rep. 34(Z1), 268–270 (2020) Liu, W.B.; Yao, H.Y.; Wang, J.F.; Chen, C.M.; Liu, Y.T.: Current situation of comprehensive utilization of iron tailings. Mater. Rep. 34(Z1), 268–270 (2020)
25.
go back to reference Davidovits, J.: Geopolymers: inorganic polymeric new materials. J. Therm. Anal. Calorim. 37(8), 1633–1656 (1991)CrossRef Davidovits, J.: Geopolymers: inorganic polymeric new materials. J. Therm. Anal. Calorim. 37(8), 1633–1656 (1991)CrossRef
26.
go back to reference Duxson, P.; Provis, J.L.: Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91(12), 3864–3869 (2008)CrossRef Duxson, P.; Provis, J.L.: Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91(12), 3864–3869 (2008)CrossRef
29.
go back to reference Li, V.C.; Leung, C.K.Y.: Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 118(11), 2246–2264 (1992)CrossRef Li, V.C.; Leung, C.K.Y.: Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 118(11), 2246–2264 (1992)CrossRef
30.
go back to reference Li, V.C.; Mishra, D.K.; Wu, H.-C.: Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Mater. Struct. 28(10), 586–595 (1995)CrossRef Li, V.C.; Mishra, D.K.; Wu, H.-C.: Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Mater. Struct. 28(10), 586–595 (1995)CrossRef
31.
go back to reference Li, V.C.; Wang, S.; Wu, C.: Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. J. Am. Concr. Inst. 98, 483–492 (2001) Li, V.C.; Wang, S.; Wu, C.: Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. J. Am. Concr. Inst. 98, 483–492 (2001)
32.
go back to reference Kanda, T.; Li, V.C.: Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Technol. 4(1), 59–72 (2006)CrossRef Kanda, T.; Li, V.C.: Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Technol. 4(1), 59–72 (2006)CrossRef
33.
go back to reference Li, V.C.; Horii, H.; Kabele, P.; Kanda, T.; Lim, Y.M.: Repair and retrofit with engineered cementitious composites. Eng. Fract. Mech. 65(2–3), 317–334 (2000)CrossRef Li, V.C.; Horii, H.; Kabele, P.; Kanda, T.; Lim, Y.M.: Repair and retrofit with engineered cementitious composites. Eng. Fract. Mech. 65(2–3), 317–334 (2000)CrossRef
34.
go back to reference Chen, Y.; Yu, J.; Leung, C.K.Y.: Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion. Constr. Build. Mater. 167, 325–337 (2018)CrossRef Chen, Y.; Yu, J.; Leung, C.K.Y.: Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion. Constr. Build. Mater. 167, 325–337 (2018)CrossRef
35.
go back to reference Yang, X.; Gao, W.-Y.; Dai, J.-G.; Lu, Z.-D.; Yu, K.-Q.: Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix. Compos. Struct. 189, 9–26 (2018)CrossRef Yang, X.; Gao, W.-Y.; Dai, J.-G.; Lu, Z.-D.; Yu, K.-Q.: Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix. Compos. Struct. 189, 9–26 (2018)CrossRef
37.
go back to reference Gao, W.-Y.; Hu, K.-X.; Dai, J.-G.; Dong, K.; Yu, K.-Q.; Fang, L.-J.: Repair of fire- damaged RC slabs with basalt fabric-reinforced shotcrete. Constr. Build. Mater. 185, 79–92 (2018)CrossRef Gao, W.-Y.; Hu, K.-X.; Dai, J.-G.; Dong, K.; Yu, K.-Q.; Fang, L.-J.: Repair of fire- damaged RC slabs with basalt fabric-reinforced shotcrete. Constr. Build. Mater. 185, 79–92 (2018)CrossRef
39.
go back to reference Lee, B.Y.; Cho, C.-G.; Lim, H.-J.; Song, J.-K.; Yang, K.-H.; Li, V.C.: Strain hardening fiber reinforced alkali-activated mortar—a feasibility study. Constr. Build. Mater. 37, 15–20 (2012)CrossRef Lee, B.Y.; Cho, C.-G.; Lim, H.-J.; Song, J.-K.; Yang, K.-H.; Li, V.C.: Strain hardening fiber reinforced alkali-activated mortar—a feasibility study. Constr. Build. Mater. 37, 15–20 (2012)CrossRef
40.
go back to reference Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.-H.: High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: a micromechanics-based investigation. Arch. Civ. Mech. Eng. 17(3), 555–563 (2017)CrossRef Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.-H.: High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: a micromechanics-based investigation. Arch. Civ. Mech. Eng. 17(3), 555–563 (2017)CrossRef
41.
go back to reference Alrefaei, Y.; Dai, J.-G.: Deflection hardening behavior and elastic modulus of one- part hybrid fiber-reinforced geopolymer composites. J. Asian Concr. Fed. 5(2), 37–51 (2019)CrossRef Alrefaei, Y.; Dai, J.-G.: Deflection hardening behavior and elastic modulus of one- part hybrid fiber-reinforced geopolymer composites. J. Asian Concr. Fed. 5(2), 37–51 (2019)CrossRef
42.
go back to reference Alrefaei, Y.; Dai, J.-G.: Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 184, 419–431 (2018)CrossRef Alrefaei, Y.; Dai, J.-G.: Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 184, 419–431 (2018)CrossRef
43.
go back to reference Lao, J.C.; Huang, B.T.; Xu, L.Y.; Dai, J.G.; Shah, S.P.: Engineered geopolymer composites (EGC) with ultra-high strength and ductility. In: Kunieda, M.; Kanakubo, T.; Kanda, T.; Kobayashi, K. (Eds.) Strain Hardening Cementitious Composites. SHCC 2022. RILEM Bookseries, Vol. 39. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-15805-6_4CrossRef Lao, J.C.; Huang, B.T.; Xu, L.Y.; Dai, J.G.; Shah, S.P.: Engineered geopolymer composites (EGC) with ultra-high strength and ductility. In: Kunieda, M.; Kanakubo, T.; Kanda, T.; Kobayashi, K. (Eds.) Strain Hardening Cementitious Composites. SHCC 2022. RILEM Bookseries, Vol. 39. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-15805-6_​4CrossRef
46.
go back to reference Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U.: A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: experiments and modelling. Constr. Build. Mater. 203, 56–68 (2019)CrossRef Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U.: A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: experiments and modelling. Constr. Build. Mater. 203, 56–68 (2019)CrossRef
47.
go back to reference Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C.: Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 48, 954–960 (2013)CrossRef Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C.: Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 48, 954–960 (2013)CrossRef
51.
go back to reference Hasan, M.J.; Hossain, K.M.A.: Assessing suitability of geopolymer composites under chloride exposure. In: Walbridge, S., et al. (eds.) Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021. CSCE 2021. Lecture Notes in Civil Engineering, vol. 240. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-0507-0_35 Hasan, M.J.; Hossain, K.M.A.: Assessing suitability of geopolymer composites under chloride exposure. In: Walbridge, S., et al. (eds.) Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021. CSCE 2021. Lecture Notes in Civil Engineering, vol. 240. Springer, Singapore (2023). https://​doi.​org/​10.​1007/​978-981-19-0507-0_​35
53.
go back to reference Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)CrossRef Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)CrossRef
54.
go back to reference Reddy, M.S.; Dinakar, P.; Rao, B.H.: A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous Mesoporous Mater. 234, 12–23 (2016)CrossRef Reddy, M.S.; Dinakar, P.; Rao, B.H.: A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous Mesoporous Mater. 234, 12–23 (2016)CrossRef
56.
go back to reference Shaikh, F.U.A.: Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 50, 674–682 (2013)CrossRef Shaikh, F.U.A.: Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 50, 674–682 (2013)CrossRef
57.
go back to reference Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 168, 402–427 (2017)CrossRef Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 168, 402–427 (2017)CrossRef
58.
go back to reference Farooq, M.; Bhutta, A.; Banthia, N.: Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cem. Concr. Compos. 103, 183–192 (2019)CrossRef Farooq, M.; Bhutta, A.; Banthia, N.: Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cem. Concr. Compos. 103, 183–192 (2019)CrossRef
59.
go back to reference Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 139, 286–307 (2017)CrossRef Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 139, 286–307 (2017)CrossRef
71.
go back to reference Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Strain hardening behavior of engineered geopolymer composites: effects of the activator combination. J. Aust. Ceram. Soc. 51(1), 54–60 (2015) Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Strain hardening behavior of engineered geopolymer composites: effects of the activator combination. J. Aust. Ceram. Soc. 51(1), 54–60 (2015)
77.
go back to reference Nagajothi, S.; Elavenil, S.: Strength assessment of geopolymer concrete using M-sand. Int. J. Chem. Sci. 14(S1), 15–21 (2016) Nagajothi, S.; Elavenil, S.: Strength assessment of geopolymer concrete using M-sand. Int. J. Chem. Sci. 14(S1), 15–21 (2016)
85.
go back to reference ASTM International: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM C78/C78M-18, ASTM International, West Conshohocken (2018) ASTM International: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM C78/C78M-18, ASTM International, West Conshohocken (2018)
87.
go back to reference Qiu, J.; Zhao, Y.; Xing, J.; Sun, X.: Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator concentration. Adv. Mater. Sci. Eng. 2019, 1–12 (2019)CrossRef Qiu, J.; Zhao, Y.; Xing, J.; Sun, X.: Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator concentration. Adv. Mater. Sci. Eng. 2019, 1–12 (2019)CrossRef
89.
96.
go back to reference Nematollahi, B.; Xia, M.; Sanjayan, J.: Enhancing strength of powder-based 3D printed geopolymers for digital construction applications. In: Mechtcherine, V.; Khayat, K.; Secrieru, E. (Eds.) Rheology and Processing of Construction Materials. RheoCon SCC 2019 2019. RILEM Bookseries, Vol. 23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22566-7_48CrossRef Nematollahi, B.; Xia, M.; Sanjayan, J.: Enhancing strength of powder-based 3D printed geopolymers for digital construction applications. In: Mechtcherine, V.; Khayat, K.; Secrieru, E. (Eds.) Rheology and Processing of Construction Materials. RheoCon SCC 2019 2019. RILEM Bookseries, Vol. 23. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-22566-7_​48CrossRef
97.
Metadata
Title
Fly Ash and BOF Slag as Sustainable Precursors for Engineered Geopolymer Composite (EGC) mixes: A Strength Optimization Study
Authors
Saravanan Subramanian
Tirumalasetty Dhathu Eswar
Vinay A Joseph
Sneha B Mathew
Robin Davis
Publication date
28-11-2023
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-08421-4

Premium Partners