Skip to main content
Top
Published in:

01-12-2016 | Original Article

Focal structures analysis: identifying influential sets of individuals in a social network

Authors: Fatih Şen, Ph.D., Rolf Wigand, Ph.D., Nitin Agarwal, Ph.D., Serpil Tokdemir, Ph.D., Rafal Kasprzyk, Ph.D.

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Identifying influential individuals is a well-known approach in extracting actionable knowledge in a network. Existing studies suggest measures to identify influential individuals, i.e., they focus on the question “which individuals are best connected to others or have the most influence?”. Such individuals, however, may not represent the context (relationships, interactions, etc.) entirely in a social network. For example, it is nearly an impossible task for a single individual to organize a mass protest of the scale of the Saudi Arabian women’s 2013 Oct26Driving campaign, the 2012 Occupy Wall Street and the 2011 Arab Spring. Similarly, other events such as mobilizing the 2013 Taksim square-Gezi Park protesters, coordinating crisis response for natural disasters (e.g., the 2010 Haiti earthquake), or even organizing flash mobs would require a key set of individuals rather than a single or the most influential individual in a social network. An alternate line of research dealing with community or cluster identification approaches extract subnetworks of individuals. However, these structures may not represent the key sets of individuals that could coordinate the social processes mentioned above. Therefore, we develop the Focal Structures Analysis (FSA) methodology to extract such key sets of individuals, called focal structures, in a social network. This research goes beyond the traditional unit of analysis, which is an individual or a set of influential individuals, and places focal structures between the individuals and communities/clusters as the unit of analysis. To the best of our knowledge, this type of work is the first effort in identifying influential sets of individuals and would open up new directions for researchers to develop new methods in social network analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal N, Galan M, Liu H, Subramanya S (2010) Wiscoll: collective wisdom based blog clustering. Inf Sci 180(1):39–61CrossRef Agarwal N, Galan M, Liu H, Subramanya S (2010) Wiscoll: collective wisdom based blog clustering. Inf Sci 180(1):39–61CrossRef
go back to reference Agarwal N, Liu H (2009) Modeling and data mining in blogosphere. Synth Lect Data Min Knowl Discov 1(1):1–109CrossRef Agarwal N, Liu H (2009) Modeling and data mining in blogosphere. Synth Lect Data Min Knowl Discov 1(1):1–109CrossRef
go back to reference Agarwal N, Liu H, Tang L, Philip SY (2012) Modeling blogger influence in a community. Soc Netw Anal Min 2(2):139–162CrossRef Agarwal N, Liu H, Tang L, Philip SY (2012) Modeling blogger influence in a community. Soc Netw Anal Min 2(2):139–162CrossRef
go back to reference Barlow J, Rada R, Diaper D (1989) Interacting with computers. Interact Comput 1(1):39–42CrossRef Barlow J, Rada R, Diaper D (1989) Interacting with computers. Interact Comput 1(1):39–42CrossRef
go back to reference Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRef Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRef
go back to reference Bordino I, Donato D, Gionis A, Leonardi S (2008) Mining large networks with subgraph counting. In: Data mining, 2008. ICDM’08. Eighth IEEE International Conference, IEEE, pp 737–742 Bordino I, Donato D, Gionis A, Leonardi S (2008) Mining large networks with subgraph counting. In: Data mining, 2008. ICDM’08. Eighth IEEE International Conference, IEEE, pp 737–742
go back to reference Borgatti SP (1995) Centrality and aids. Connections 18(1):112–114 Borgatti SP (1995) Centrality and aids. Connections 18(1):112–114
go back to reference Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117CrossRef Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117CrossRef
go back to reference Brooks CH, Montanez N (2006) Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th International Conference on World Wide Web, ACM, pp 625–632 Brooks CH, Montanez N (2006) Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th International Conference on World Wide Web, ACM, pp 625–632
go back to reference Burton K, Java A, Soboroff I (2009) The icwsm 2009 spinn3r dataset. In: Proceedings of the third annual conference on weblogs and social media (ICWSM 2009), San Jose, CA, 2009 Burton K, Java A, Soboroff I (2009) The icwsm 2009 spinn3r dataset. In: Proceedings of the third annual conference on weblogs and social media (ICWSM 2009), San Jose, CA, 2009
go back to reference Chi Y, Song X, Zhou D, Hino K, Tseng BL (2007a) Evolutionary spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp 153–162 Chi Y, Song X, Zhou D, Hino K, Tseng BL (2007a) Evolutionary spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp 153–162
go back to reference Chi Y, Zhu S, Song X, Tatemura J, Tseng BL (2007b) Structural and temporal analysis of the blogosphere through community factorization. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 163–172 Chi Y, Zhu S, Song X, Tatemura J, Tseng BL (2007b) Structural and temporal analysis of the blogosphere through community factorization. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 163–172
go back to reference Coleman JS (1989) Social capital in the creation of human capital. University of Chicago Press, Chicago Coleman JS (1989) Social capital in the creation of human capital. University of Chicago Press, Chicago
go back to reference Erds P, Renyi A (1959) On random graphs. Publ Math Debr 6:290–297 Erds P, Renyi A (1959) On random graphs. Publ Math Debr 6:290–297
go back to reference Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef
go back to reference Goshal G, Barabasi A-L (2011) Ranking stability and super-stable nodes in complex networks. Nat Commun 2:394CrossRef Goshal G, Barabasi A-L (2011) Ranking stability and super-stable nodes in complex networks. Nat Commun 2:394CrossRef
go back to reference Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of the 13th international conference on World Wide Web, ACM, pp 491–501 Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of the 13th international conference on World Wide Web, ACM, pp 491–501
go back to reference Hagen L, Kahng AB (1992) New spectral methods for ratio cut partitioning and clustering. Comput Aided Des Integr Circuits Syst IEEE Trans 11(9):1074–1085CrossRef Hagen L, Kahng AB (1992) New spectral methods for ratio cut partitioning and clustering. Comput Aided Des Integr Circuits Syst IEEE Trans 11(9):1074–1085CrossRef
go back to reference Haynes J, Perisic I (2009) Mapping search relevance to social networks. In Proceedings of the 3rd workshop on social network mining and analysis, Paris, France, ACM, New York, p 2 Haynes J, Perisic I (2009) Mapping search relevance to social networks. In Proceedings of the 3rd workshop on social network mining and analysis, Paris, France, ACM, New York, p 2
go back to reference Holland PW, Leinhardt S (1971) Transitivity in structural models of small groups. Comp Group Stud 2:107–124 Holland PW, Leinhardt S (1971) Transitivity in structural models of small groups. Comp Group Stud 2:107–124
go back to reference Janssen J, Hurshman M, Kalyaniwalla N (2012) Model selection for social networks using graphlets. Internet Math 8(4):338–363MathSciNetCrossRef Janssen J, Hurshman M, Kalyaniwalla N (2012) Model selection for social networks using graphlets. Internet Math 8(4):338–363MathSciNetCrossRef
go back to reference Java A, Joshi A, Finin T (2008) Detecting communities via simultaneous clustering of graphs and folksonomies. In: Proceedings of WebKDD 2008 Java A, Joshi A, Finin T (2008) Detecting communities via simultaneous clustering of graphs and folksonomies. In: Proceedings of WebKDD 2008
go back to reference Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sc USA 102:13773–13778CrossRef Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sc USA 102:13773–13778CrossRef
go back to reference Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20:1746–1758CrossRef Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20:1746–1758CrossRef
go back to reference Kimura M, Saito K, Nakano R (2007) Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd national conference on artificial intelligence, vol 7, p 1371–1376, Vancouver, BC, Canada, July 22–26 Kimura M, Saito K, Nakano R (2007) Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd national conference on artificial intelligence, vol 7, p 1371–1376, Vancouver, BC, Canada, July 22–26
go back to reference Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef
go back to reference Kondor R, Shervashidze N, Borgwardt KM (2009) The graphlet spectrum. In: Proceedings of the 26th annual international conference on machine learning, ACM, pp 529–536 Kondor R, Shervashidze N, Borgwardt KM (2009) The graphlet spectrum. In: Proceedings of the 26th annual international conference on machine learning, ACM, pp 529–536
go back to reference Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M (2007) Cascading behavior in large blog graphs. arXiv preprint. arXiv:0704.2803 Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M (2007) Cascading behavior in large blog graphs. arXiv preprint. arXiv:​0704.​2803
go back to reference Li B, Xu S, Zhang J (2007) Enhancing clustering blog documents by utilizing author/reader comments. In: Proceedings of the 45th annual southeast regional conference, ACM, pp 94–99 Li B, Xu S, Zhang J (2007) Enhancing clustering blog documents by utilizing author/reader comments. In: Proceedings of the 45th annual southeast regional conference, ACM, pp 94–99
go back to reference Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef
go back to reference Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef
go back to reference Nieminen J (1974) On the centrality in a graph. Scand J Psychol 15(1):332–336CrossRef Nieminen J (1974) On the centrality in a graph. Scand J Psychol 15(1):332–336CrossRef
go back to reference Ning H, Xu W, Chi Y, Gong Y, Huang TS (2007) Incremental spectral clustering with application to monitoring of evolving blog communities. In: SDM Ning H, Xu W, Chi Y, Gong Y, Huang TS (2007) Incremental spectral clustering with application to monitoring of evolving blog communities. In: SDM
go back to reference Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order to the web. Technical report 1999-66, Stanford University Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order to the web. Technical report 1999-66, Stanford University
go back to reference Parsons T (1937) The structure of social action. In: Social action, New York: Free Press, pp 59–60 Parsons T (1937) The structure of social action. In: Social action, New York: Free Press, pp 59–60
go back to reference Portes A (2000) Social capital: its origins and applications in modern sociology. In: LESSER, Eric L (eds) Knowledge and social capital. Butterworth-Heinemann, Boston, pp 43–67 Portes A (2000) Social capital: its origins and applications in modern sociology. In: LESSER, Eric L (eds) Knowledge and social capital. Butterworth-Heinemann, Boston, pp 43–67
go back to reference Pujol JM, Erramilli V, Rodriguez P (2009) Divide and conquer: partitioning online social networks. In: CoRR, abs/0905.4918 Pujol JM, Erramilli V, Rodriguez P (2009) Divide and conquer: partitioning online social networks. In: CoRR, abs/0905.4918
go back to reference Şen F, Wigand RT, Agarwal N, Mahata D, Bisgin H (2012) Identifying focal patterns in social networks. In Computational aspects of social networks (CASoN), 2012 fourth international conference on IEEE, pp 105–108 Şen F, Wigand RT, Agarwal N, Mahata D, Bisgin H (2012) Identifying focal patterns in social networks. In Computational aspects of social networks (CASoN), 2012 fourth international conference on IEEE, pp 105–108
go back to reference Sen F, Nagisetty N, Viangteeravat T, Agarwal N (2015) An online platform for focal structures analysis-analyzing smaller and more pertinent groups using a web tool. In: AAAI spring symposium series. Stanford University, Palo Alto, CA, USA Sen F, Nagisetty N, Viangteeravat T, Agarwal N (2015) An online platform for focal structures analysis-analyzing smaller and more pertinent groups using a web tool. In: AAAI spring symposium series. Stanford University, Palo Alto, CA, USA
go back to reference Shervashidze N, Petri T, Mehlhorn K, Borgwardt KM, Vishwanathan S (2009) Efficient graphlet kernels for large graph comparison. In: International conference on artificial intelligence and statistics, pp 488–495 Shervashidze N, Petri T, Mehlhorn K, Borgwardt KM, Vishwanathan S (2009) Efficient graphlet kernels for large graph comparison. In: International conference on artificial intelligence and statistics, pp 488–495
go back to reference Shi J, Malik J (2000) Normalized cuts and image segmentation. Pattern Anal Mach Intell IEEE Trans 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. Pattern Anal Mach Intell IEEE Trans 22(8):888–905CrossRef
go back to reference Turner JH (1988) A theory of social interaction. Stanford University Press, Palo Alto Turner JH (1988) A theory of social interaction. Stanford University Press, Palo Alto
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef
go back to reference Weber M (1978) Basic sociological terms. Econ soc 1:3–62 Weber M (1978) Basic sociological terms. Econ soc 1:3–62
go back to reference Zachary W (1977) An information flow modelfor conflict and fission in small groups1. J Anthropol Res 33(4):452–473CrossRef Zachary W (1977) An information flow modelfor conflict and fission in small groups1. J Anthropol Res 33(4):452–473CrossRef
go back to reference Zaidi F (2013) Small world networks and clustered small world networks with random connectivity. Soc Netw Anal Min 1:1–13 Zaidi F (2013) Small world networks and clustered small world networks with random connectivity. Soc Netw Anal Min 1:1–13
Metadata
Title
Focal structures analysis: identifying influential sets of individuals in a social network
Authors
Fatih Şen, Ph.D.
Rolf Wigand, Ph.D.
Nitin Agarwal, Ph.D.
Serpil Tokdemir, Ph.D.
Rafal Kasprzyk, Ph.D.
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0319-z

Premium Partner