Skip to main content
Top
Published in:

2020 | OriginalPaper | Chapter

Fog Computing: Data Analytics for Time-Sensitive Applications

Authors : Jawwad A. Shamsi, Muhammad Hanif, Sherali Zeadally

Published in: Convergence of Artificial Intelligence and the Internet of Things

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fog computing has been initiated to reduce communications delays between users and cloud systems. The idea of Fog computing allows users to interact with intermediate servers, while reaping the benefits of reliability and elasticity, which are inherent in cloud computing. Fog computing can leverage Internet of Things (IoT) by providing a reliable service layer for time-sensitive applications and real-time analytics. While the concept of fog computing is still evolving, it is pertinent to study the domain of fog computing and analyze its strengths and weaknesses. Motivated by this need, this chapter describes the architecture of fog computing and explain its efficacy with respect to different applications. The chapter highlights some of the key challenges associated with this evolving platform along with future directions of research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 464–470. IEEE (2014) Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 464–470. IEEE (2014)
2.
go back to reference Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. (2018) Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. (2018)
3.
go back to reference Agarwal, S., Yadav, S., Yadav, A.K.: An efficient architecture and algorithm for resource provisioning in fog computing. Int. J. Inf. Eng. Electron. Bus. 8(1), 48 (2016) Agarwal, S., Yadav, S., Yadav, A.K.: An efficient architecture and algorithm for resource provisioning in fog computing. Int. J. Inf. Eng. Electron. Bus. 8(1), 48 (2016)
4.
go back to reference Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: British Machine Vision Conference, vol. 1, p. 2 (2017) Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: British Machine Vision Conference, vol. 1, p. 2 (2017)
5.
go back to reference Ali, M.: Green cloud on the horizon. In: IEEE International Conference on Cloud Computing, pp. 451–459. Springer (2009) Ali, M.: Green cloud on the horizon. In: IEEE International Conference on Cloud Computing, pp. 451–459. Springer (2009)
6.
go back to reference Andriopoulou, F., Dagiuklas, T., Orphanoudakis, T.: Integrating IoT and fog computing for healthcare service delivery. In: Components and Services for IoT Platforms, pp. 213–232. Springer (2017) Andriopoulou, F., Dagiuklas, T., Orphanoudakis, T.: Integrating IoT and fog computing for healthcare service delivery. In: Components and Services for IoT Platforms, pp. 213–232. Springer (2017)
7.
go back to reference Balevi, E., Gitlin, R.D.: Unsupervised machine learning in 5g networks for low latency communications. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–2. IEEE (2017) Balevi, E., Gitlin, R.D.: Unsupervised machine learning in 5g networks for low latency communications. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–2. IEEE (2017)
8.
go back to reference Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186. Springer (2014) Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186. Springer (2014)
9.
go back to reference Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), pp. 105–112. IEEE (2016) Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), pp. 105–112. IEEE (2016)
10.
go back to reference Chen, Y., Abraham, A., Yang, B.: Hybrid flexible neural-tree-based intrusion detection systems. Int. J. Intell. Syst. 22(4), 337–352 (2007) Chen, Y., Abraham, A., Yang, B.: Hybrid flexible neural-tree-based intrusion detection systems. Int. J. Intell. Syst. 22(4), 337–352 (2007)
11.
go back to reference Chiang, M., Ha, S., Chih-Lin, I., Risso, F., Zhang, T.: Clarifying fog computing and networking: 10 questions and answers. IEEE Commun. Mag. 55(4), 18–20 (2017) Chiang, M., Ha, S., Chih-Lin, I., Risso, F., Zhang, T.: Clarifying fog computing and networking: 10 questions and answers. IEEE Commun. Mag. 55(4), 18–20 (2017)
12.
go back to reference Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016) Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)
13.
go back to reference Cho, S.-B.: Exploiting machine learning techniques for location recognition and prediction with smartphone logs. Neurocomputing 176, 98–106 (2016)CrossRef Cho, S.-B.: Exploiting machine learning techniques for location recognition and prediction with smartphone logs. Neurocomputing 176, 98–106 (2016)CrossRef
14.
go back to reference Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75. Elsevier (2016) Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75. Elsevier (2016)
15.
go back to reference Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach for internet of things. Future Gener. Comput. Syst. 82, 761–768 (2018) Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach for internet of things. Future Gener. Comput. Syst. 82, 761–768 (2018)
16.
go back to reference Dsouza, C., Ahn, G.J., Taguinod, M.: Policy-driven security management for fog computing: preliminary framework and a case study. In: 2014 IEEE 15th International Conference on Information Reuse and Integration (IRI), pp 16–23. IEEE (2014) Dsouza, C., Ahn, G.J., Taguinod, M.: Policy-driven security management for fog computing: preliminary framework and a case study. In: 2014 IEEE 15th International Conference on Information Reuse and Integration (IRI), pp 16–23. IEEE (2014)
17.
go back to reference Hoque, S., de Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 294–299. IEEE (2017) Hoque, S., de Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 294–299. IEEE (2017)
18.
go back to reference Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge: trade-off between energy efficiency and service availability at fog nano data centers. IEEE Wirel. Commun. 24(3), 48–56 (2017) Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge: trade-off between energy efficiency and service availability at fog nano data centers. IEEE Wirel. Commun. 24(3), 48–56 (2017)
19.
go back to reference Lee, K., Kim, D., Ha, D., Rajput, U., Oh, H.: On security and privacy issues of fog computing supported internet of things environment. In: 2015 6th International Conference on the Network of the Future (NOF), pp. 1–3. IEEE (2015) Lee, K., Kim, D., Ha, D., Rajput, U., Oh, H.: On security and privacy issues of fog computing supported internet of things environment. In: 2015 6th International Conference on the Network of the Future (NOF), pp. 1–3. IEEE (2015)
20.
go back to reference Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815 (2015) Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: focusing on mobile users at the edge. arXiv preprint arXiv:​1502.​01815 (2015)
21.
go back to reference MacArthur, P., Liu, Q., Russell, R.D., Mizero, F., Veeraraghavan, M., Dennis, J.M.: An integrated tutorial on infiniband, verbs, and MPI. IEEE Commun. Surv. Tutor. 19(4), 2894–2926 (2017) MacArthur, P., Liu, Q., Russell, R.D., Mizero, F., Veeraraghavan, M., Dennis, J.M.: An integrated tutorial on infiniband, verbs, and MPI. IEEE Commun. Surv. Tutor. 19(4), 2894–2926 (2017)
22.
go back to reference Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer (2018) Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer (2018)
23.
go back to reference Markakis, E., Mastorakis, G., Mavromoustakis, C.X., Pallis, E.: Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications. Institution of Engineering and Technology (2017) Markakis, E., Mastorakis, G., Mavromoustakis, C.X., Pallis, E.: Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications. Institution of Engineering and Technology (2017)
24.
go back to reference Markakis, E.K., Karras, K., Zotos, N., Sideris, A., Moysiadis, T., Corsaro, A., Alexiou, G., Skianis, C., Mastorakis, G., Mavromoustakis, C.X., et al.: Exegesis: extreme edge resource harvesting for a virtualized fog environment. IEEE Commun. Mag. 55(7), 173–179 (2017) Markakis, E.K., Karras, K., Zotos, N., Sideris, A., Moysiadis, T., Corsaro, A., Alexiou, G., Skianis, C., Mastorakis, G., Mavromoustakis, C.X., et al.: Exegesis: extreme edge resource harvesting for a virtualized fog environment. IEEE Commun. Mag. 55(7), 173–179 (2017)
25.
go back to reference Nikoloudakis, Y., Panagiotakis, S., Markakis, E., Pallis, E., Mastorakis, G., Mavromoustakis, C.X., Dobre, C.: A fog-based emergency system for smart enhanced living environments. IEEE Cloud Comput. (6), 54–62 (2016) Nikoloudakis, Y., Panagiotakis, S., Markakis, E., Pallis, E., Mastorakis, G., Mavromoustakis, C.X., Dobre, C.: A fog-based emergency system for smart enhanced living environments. IEEE Cloud Comput. (6), 54–62 (2016)
26.
go back to reference Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab, N.: Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imag. Graph. 41, 55–60 (2015)CrossRef Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab, N.: Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imag. Graph. 41, 55–60 (2015)CrossRef
27.
go back to reference Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: a survey. ACM Comput. Surv. (CSUR) 50(3), 32 (2017) Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: a survey. ACM Comput. Surv. (CSUR) 50(3), 32 (2017)
28.
go back to reference Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog computing system. In: 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4. IEEE (2016) Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog computing system. In: 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4. IEEE (2016)
29.
go back to reference Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018) Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018)
30.
go back to reference Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in utilizing fog computing for transport infrastructure. In: International Conference on Critical Information Infrastructures Security, pp. 15–26. Springer (2015) Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in utilizing fog computing for transport infrastructure. In: International Conference on Critical Information Infrastructures Security, pp. 15–26. Springer (2015)
31.
go back to reference Sheikh, F., Fazal, H., Taqvi, F., Shamsi, J.: Power-aware server selection in nano data center. In: 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), pp. 776–782. IEEE (2015) Sheikh, F., Fazal, H., Taqvi, F., Shamsi, J.: Power-aware server selection in nano data center. In: 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), pp. 776–782. IEEE (2015)
32.
go back to reference Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRef Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRef
33.
go back to reference Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., Yang, Q.: Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Inf. 13(5), 2140–2150 (2017)CrossRef Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., Yang, Q.: Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Inf. 13(5), 2140–2150 (2017)CrossRef
34.
go back to reference Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE BigData & SocialInformatics, p. 28. ACM (2015) Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE BigData & SocialInformatics, p. 28. ACM (2015)
35.
go back to reference Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS, pp. 328–339. IEEE (2017) Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS, pp. 328–339. IEEE (2017)
36.
go back to reference Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014) Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)
37.
38.
go back to reference Williams, J.B.: Fibre channel over ethernet, 8 July 2014. US Patent 8,774,215 (2014) Williams, J.B.: Fibre channel over ethernet, 8 July 2014. US Patent 8,774,215 (2014)
39.
go back to reference Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015) Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015)
Metadata
Title
Fog Computing: Data Analytics for Time-Sensitive Applications
Authors
Jawwad A. Shamsi
Muhammad Hanif
Sherali Zeadally
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_1

Premium Partner