Skip to main content
Top

2017 | OriginalPaper | Chapter

Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows

Authors : M. Di Francesco, S. Fagioli, M. D. Rosini, G. Russo

Published in: Active Particles, Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review the recent results and present new ones on a deterministic follow-the-leader particle approximation of first-and second-order models for traffic flow and pedestrian movements. We start by constructing the particle scheme for the first-order Lighthill–Whitham–Richards (LWR) model for traffic flow. The approximation is performed by a set of ODEs following the position of discretized vehicles seen as moving particles. The convergence of the scheme in the many particle limit toward the unique entropy solution of the LWR equation is proven in the case of the Cauchy problem on the real line. We then extend our approach to the initial–boundary value problem (IBVP) with time-varying Dirichlet data on a bounded interval. In this case, we prove that our scheme is convergent strongly in \(\mathbf {L^{1}}\) up to a subsequence. We then review extensions of this approach to the Hughes model for pedestrian movements and to the second-order Aw–Rascle–Zhang (ARZ) model for vehicular traffic. Finally, we complement our results with numerical simulations. In particular, the simulations performed on the IBVP and the ARZ model suggest the consistency of the corresponding schemes, which is easy to prove rigorously in some simple cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Amadori and R. M. Colombo. Continuous dependence for \(2\times 2\) conservation laws with boundary. J. Differential Equations, 138(2):229–266, 1997.MathSciNetCrossRefMATH D. Amadori and R. M. Colombo. Continuous dependence for \(2\times 2\) conservation laws with boundary. J. Differential Equations, 138(2):229–266, 1997.MathSciNetCrossRefMATH
2.
go back to reference D. Amadori and M. Di Francesco. The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math. Sci. Ser. B Engl. Ed., 32(1):259–280, 2012. D. Amadori and M. Di Francesco. The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math. Sci. Ser. B Engl. Ed., 32(1):259–280, 2012.
3.
go back to reference D. Amadori, P. Goatin, and M. D. Rosini. Existence results for Hughes’ model for pedestrian flows. J. Math. Anal. Appl., 420(1):387–406, 2014.MathSciNetCrossRefMATH D. Amadori, P. Goatin, and M. D. Rosini. Existence results for Hughes’ model for pedestrian flows. J. Math. Anal. Appl., 420(1):387–406, 2014.MathSciNetCrossRefMATH
4.
go back to reference L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. 2nd ed. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser., 2008. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. 2nd ed. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser., 2008.
5.
go back to reference B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland, and M. D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 11(1):29–47, 2016.MathSciNetCrossRefMATH B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland, and M. D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 11(1):29–47, 2016.MathSciNetCrossRefMATH
6.
go back to reference B. Andreianov, C. Donadello, and M. D. Rosini. A second-order model for vehicular traffics with local point constraints on the flow. Mathematical Models and Methods in Applied Sciences, 26(04):751–802, 2016.MathSciNetCrossRefMATH B. Andreianov, C. Donadello, and M. D. Rosini. A second-order model for vehicular traffics with local point constraints on the flow. Mathematical Models and Methods in Applied Sciences, 26(04):751–802, 2016.MathSciNetCrossRefMATH
7.
go back to reference J.-P. Aubin. Macroscopic traffic models: Shifting from densities to ‘celerities’. Applied Mathematics and Computation, 217(3):963–971, 2010. J.-P. Aubin. Macroscopic traffic models: Shifting from densities to ‘celerities’. Applied Mathematics and Computation, 217(3):963–971, 2010.
8.
go back to reference A. Aw, A. Klar, T. Materne, and M. Rascle. Derivation of continuum traffic flow models from microscopic Follow-the-Leader models. SIAM Journal on Applied Mathematics, 63(1):259–278, 2002.MathSciNetCrossRefMATH A. Aw, A. Klar, T. Materne, and M. Rascle. Derivation of continuum traffic flow models from microscopic Follow-the-Leader models. SIAM Journal on Applied Mathematics, 63(1):259–278, 2002.MathSciNetCrossRefMATH
9.
go back to reference A. Aw and M. Rascle. Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math., 60(3):916–938 (electronic), 2000. A. Aw and M. Rascle. Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math., 60(3):916–938 (electronic), 2000.
10.
go back to reference C. Bardos, A. Y. le Roux, and J.-C. Nédélec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.MathSciNetCrossRefMATH C. Bardos, A. Y. le Roux, and J.-C. Nédélec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.MathSciNetCrossRefMATH
11.
go back to reference N. Bellomo and A. Bellouquid. On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, 6:383–399, 2011.MathSciNetCrossRefMATH N. Bellomo and A. Bellouquid. On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, 6:383–399, 2011.MathSciNetCrossRefMATH
12.
go back to reference N. Bellomo, M. Delitala, and V. Coscia. On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling. Math. Models Methods Appl. Sci., 12(12):1801–1843, 2002.MathSciNetCrossRefMATH N. Bellomo, M. Delitala, and V. Coscia. On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling. Math. Models Methods Appl. Sci., 12(12):1801–1843, 2002.MathSciNetCrossRefMATH
13.
go back to reference N. Bellomo and C. Dogbe. On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev., 53(3):409–463, 2011.MathSciNetCrossRefMATH N. Bellomo and C. Dogbe. On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev., 53(3):409–463, 2011.MathSciNetCrossRefMATH
14.
go back to reference F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal., 187(2):185–220, 2008.MathSciNetCrossRefMATH F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal., 187(2):185–220, 2008.MathSciNetCrossRefMATH
15.
go back to reference F. Bolley, Y. Brenier, and G. Loeper. Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ., 2(1):91–107, 2005.MathSciNetCrossRefMATH F. Bolley, Y. Brenier, and G. Loeper. Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ., 2(1):91–107, 2005.MathSciNetCrossRefMATH
16.
go back to reference Y. Brenier and E. Grenier. Sticky particles and scalar conservation laws. SIAM J. Numer. Anal., 35(6):2317–2328 (electronic), 1998. Y. Brenier and E. Grenier. Sticky particles and scalar conservation laws. SIAM J. Numer. Anal., 35(6):2317–2328 (electronic), 1998.
17.
go back to reference A. Bressan. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 170(2):414–432, 1992.MathSciNetCrossRefMATH A. Bressan. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 170(2):414–432, 1992.MathSciNetCrossRefMATH
18.
go back to reference A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem.
19.
go back to reference M. Burger, M. Di Francesco, P. A. Markowich, and M.-T. Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser. B, 19(5):1311–1333, 2014.MathSciNetCrossRefMATH M. Burger, M. Di Francesco, P. A. Markowich, and M.-T. Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser. B, 19(5):1311–1333, 2014.MathSciNetCrossRefMATH
20.
go back to reference J. A. Carrillo, M. Di Francesco, and C. Lattanzio. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations, 231(2):425–458, 2006.MathSciNetCrossRefMATH J. A. Carrillo, M. Di Francesco, and C. Lattanzio. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations, 231(2):425–458, 2006.MathSciNetCrossRefMATH
21.
go back to reference J. A. Carrillo, S. Martin, and M.-T. Wolfram. An improved version of the Hughes model for pedestrian flow. Mathematical Models and Methods in Applied Sciences, 26(04):671–697, 2016.MathSciNetCrossRefMATH J. A. Carrillo, S. Martin, and M.-T. Wolfram. An improved version of the Hughes model for pedestrian flow. Mathematical Models and Methods in Applied Sciences, 26(04):671–697, 2016.MathSciNetCrossRefMATH
22.
go back to reference C. Chalons and P. Goatin. Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci., 5(3):533–551, 09 2007. C. Chalons and P. Goatin. Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci., 5(3):533–551, 09 2007.
23.
go back to reference G.-Q. Chen and M. Rascle. Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal., 153(3):205–220, 2000.MathSciNetCrossRefMATH G.-Q. Chen and M. Rascle. Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal., 153(3):205–220, 2000.MathSciNetCrossRefMATH
24.
go back to reference R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003.MathSciNetCrossRefMATH R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003.MathSciNetCrossRefMATH
25.
26.
27.
go back to reference C. M. Dafermos. Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl., 38:33–41, 1972.MathSciNetCrossRefMATH C. M. Dafermos. Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl., 38:33–41, 1972.MathSciNetCrossRefMATH
28.
go back to reference C. F. Daganzo. A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part B: Methodological, 39(2):187–196, 2005.CrossRef C. F. Daganzo. A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part B: Methodological, 39(2):187–196, 2005.CrossRef
29.
go back to reference M. Di Francesco, S. Fagioli, and M. D. Rosini. Many particle approximation for the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences and Engineering (MBE), 14(1), February 2017 (online). M. Di Francesco, S. Fagioli, and M. D. Rosini. Many particle approximation for the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences and Engineering (MBE), 14(1), February 2017 (online).
30.
go back to reference M. Di Francesco, S. Fagioli, and M. D. Rosini. Deterministic particle approximation of scalar conservation laws. arXiv preprint arXiv:1602.06153, 2016. M. Di Francesco, S. Fagioli, and M. D. Rosini. Deterministic particle approximation of scalar conservation laws. arXiv preprint arXiv:​1602.​06153, 2016.
31.
go back to reference M. Di Francesco, S. Fagioli, M. D. Rosini, and G. Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic and Related Models, 10(1):215–237, 2017. M. Di Francesco, S. Fagioli, M. D. Rosini, and G. Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic and Related Models, 10(1):215–237, 2017.
32.
go back to reference M. Di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differential Equations, 250(3):1334–1362, 2011.MathSciNetCrossRefMATH M. Di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differential Equations, 250(3):1334–1362, 2011.MathSciNetCrossRefMATH
33.
go back to reference M. Di Francesco and M. D. Rosini. Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit. Archive for Rational Mechanics and Analysis, 217(3):831–871, 2015.MathSciNetCrossRefMATH M. Di Francesco and M. D. Rosini. Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit. Archive for Rational Mechanics and Analysis, 217(3):831–871, 2015.MathSciNetCrossRefMATH
34.
go back to reference R. J. DiPerna. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 20(1):187–212, 1976.MathSciNetCrossRefMATH R. J. DiPerna. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 20(1):187–212, 1976.MathSciNetCrossRefMATH
35.
go back to reference R. L. Dobrušin. Vlasov equations. Funktsional. Anal. i Prilozhen., 13(2):48–58, 96, 1979. R. L. Dobrušin. Vlasov equations. Funktsional. Anal. i Prilozhen., 13(2):48–58, 96, 1979.
36.
go back to reference F. Dubois and P. LeFloch. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 71(1):93–122, 1988.MathSciNetCrossRefMATH F. Dubois and P. LeFloch. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 71(1):93–122, 1988.MathSciNetCrossRefMATH
37.
go back to reference N. El-Khatib, P. Goatin, and M. D. Rosini. On entropy weak solutions of Hughes’ model for pedestrian motion. Z. Angew. Math. Phys., 64(2):223–251, 2013.MathSciNetCrossRefMATH N. El-Khatib, P. Goatin, and M. D. Rosini. On entropy weak solutions of Hughes’ model for pedestrian motion. Z. Angew. Math. Phys., 64(2):223–251, 2013.MathSciNetCrossRefMATH
38.
39.
go back to reference P. L. Ferrari and P. Nejjar. Shock fluctuations in flat TASEP under critical scaling. J. Stat. Phys., 160(4):985–1004, 2015.MathSciNetCrossRefMATH P. L. Ferrari and P. Nejjar. Shock fluctuations in flat TASEP under critical scaling. J. Stat. Phys., 160(4):985–1004, 2015.MathSciNetCrossRefMATH
40.
go back to reference R. E. Ferreira and C. I. Kondo. Glimm method and wave-front tracking for the Aw-Rascle traffic flow model. Far East J. Math. Sci., 43:203–233, 2010.MathSciNetMATH R. E. Ferreira and C. I. Kondo. Glimm method and wave-front tracking for the Aw-Rascle traffic flow model. Far East J. Math. Sci., 43:203–233, 2010.MathSciNetMATH
41.
42.
go back to reference P. Goatin and M. Mimault. The wave-front tracking algorithm for Hughes’ model of pedestrian motion. SIAM J. Sci. Comput., 35(3):B606–B622, 2013.MathSciNetCrossRefMATH P. Goatin and M. Mimault. The wave-front tracking algorithm for Hughes’ model of pedestrian motion. SIAM J. Sci. Comput., 35(3):B606–B622, 2013.MathSciNetCrossRefMATH
43.
go back to reference M. Godvik and H. Hanche-Olsen. Existence of solutions for the Aw-Rascle traffic flow model with vacuum. Journal of Hyperbolic Differential Equations, 05(01):45–63, 2008.MathSciNetCrossRefMATH M. Godvik and H. Hanche-Olsen. Existence of solutions for the Aw-Rascle traffic flow model with vacuum. Journal of Hyperbolic Differential Equations, 05(01):45–63, 2008.MathSciNetCrossRefMATH
44.
go back to reference L. Gosse and G. Toscani. Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal., 43(6):2590–2606 (electronic), 2006. L. Gosse and G. Toscani. Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal., 43(6):2590–2606 (electronic), 2006.
46.
go back to reference B. Greenshields. A study of traffic capacity. Proceedings of the Highway Research Board, 14:448–477, 1935. B. Greenshields. A study of traffic capacity. Proceedings of the Highway Research Board, 14:448–477, 1935.
47.
go back to reference D. Hoff. The Sharp Form of Oleinik’s Entropy Condition in Several Space Variables. Transactions of the American Mathematical Society, 276(2):707–714, 1983.MathSciNetMATH D. Hoff. The Sharp Form of Oleinik’s Entropy Condition in Several Space Variables. Transactions of the American Mathematical Society, 276(2):707–714, 1983.MathSciNetMATH
48.
go back to reference H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152. Springer, 2015. H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152. Springer, 2015.
49.
go back to reference R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507–535, 2002. R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507–535, 2002.
50.
go back to reference R. L. Hughes. The flow of human crowds. In Annual review of fluid mechanics, Vol. 35, volume 35 of Annu. Rev. Fluid Mech., pages 169–182. Annual Reviews, Palo Alto, CA, 2003. R. L. Hughes. The flow of human crowds. In Annual review of fluid mechanics, Vol. 35, volume 35 of Annu. Rev. Fluid Mech., pages 169–182. Annual Reviews, Palo Alto, CA, 2003.
51.
go back to reference C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
52.
go back to reference S. N. Kruzhkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970. S. N. Kruzhkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.
53.
go back to reference M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955. M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955.
54.
go back to reference P.-L. Lions, B. Perthame, and E. Tadmor. A kinetic formulation of multidimensional scalar conservation laws and related equations. J. American Math. Society, 7:169–191, 1994.MathSciNetCrossRefMATH P.-L. Lions, B. Perthame, and E. Tadmor. A kinetic formulation of multidimensional scalar conservation laws and related equations. J. American Math. Society, 7:169–191, 1994.MathSciNetCrossRefMATH
55.
go back to reference D. Matthes and H. Osberger. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal., 48(3):697–726, 2014.MathSciNetCrossRefMATH D. Matthes and H. Osberger. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal., 48(3):697–726, 2014.MathSciNetCrossRefMATH
56.
go back to reference C. B. Morrey, Jr. On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math., 8:279–326, 1955.MathSciNetCrossRefMATH C. B. Morrey, Jr. On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math., 8:279–326, 1955.MathSciNetCrossRefMATH
57.
go back to reference H. Neunzert, A. Klar, and J. Struckmeier. Particle methods: theory and applications. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 281–306. Akademie Verlag, Berlin, 1996. H. Neunzert, A. Klar, and J. Struckmeier. Particle methods: theory and applications. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 281–306. Akademie Verlag, Berlin, 1996.
58.
go back to reference G. F. Newell. A simplified theory of kinematic waves in highway traffic. Transportation Research Part B: Methodological, 27(4):281–313, 1993.CrossRef G. F. Newell. A simplified theory of kinematic waves in highway traffic. Transportation Research Part B: Methodological, 27(4):281–313, 1993.CrossRef
59.
go back to reference O. A. Oleinik. Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. (2), 26:95–172, 1963.MathSciNet O. A. Oleinik. Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. (2), 26:95–172, 1963.MathSciNet
60.
go back to reference L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2), 65:117–149, 1944.MathSciNetCrossRefMATH L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2), 65:117–149, 1944.MathSciNetCrossRefMATH
61.
go back to reference B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science. Springer New York, 2009. B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science. Springer New York, 2009.
62.
go back to reference L. A. Pipes. Car following models and the fundamental diagram of road traffic. Transp. Res., 1:21–29, 1967.CrossRef L. A. Pipes. Car following models and the fundamental diagram of road traffic. Transp. Res., 1:21–29, 1967.CrossRef
64.
go back to reference M. D. Rosini. Macroscopic models for vehicular flows and crowd dynamics: theory and applications. Understanding Complex Systems. Springer, Heidelberg, 2013.CrossRefMATH M. D. Rosini. Macroscopic models for vehicular flows and crowd dynamics: theory and applications. Understanding Complex Systems. Springer, Heidelberg, 2013.CrossRefMATH
66.
go back to reference M. Twarogowska, P. Goatin, and R. Duvigneau. Macroscopic modeling and simulations of room evacuation. Appl. Math. Model., 38(24):5781–5795, 2014.MathSciNetCrossRef M. Twarogowska, P. Goatin, and R. Duvigneau. Macroscopic modeling and simulations of room evacuation. Appl. Math. Model., 38(24):5781–5795, 2014.MathSciNetCrossRef
67.
go back to reference R. T. Underwood. Speed, volume, and density relationship. In Quality and theory of traffic flow: a symposium, pages 141–188. Greenshields, B.D. and Bureau of Highway Traffic, Yale University, 1961. R. T. Underwood. Speed, volume, and density relationship. In Quality and theory of traffic flow: a symposium, pages 141–188. Greenshields, B.D. and Bureau of Highway Traffic, Yale University, 1961.
68.
go back to reference C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.
69.
go back to reference H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3):275–290, 2002. H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3):275–290, 2002.
Metadata
Title
Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows
Authors
M. Di Francesco
S. Fagioli
M. D. Rosini
G. Russo
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49996-3_9

Premium Partners