Skip to main content
Top
Published in: Meccanica 3/2018

17-05-2017 | Recent Advances on the Mechanics of Materials

Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization

Authors: Alessandra Genoese, Andrea Genoese, Nicola Luigi Rizzi, Ginevra Salerno

Published in: Meccanica | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The force constants related to the bond stretching and angular variation of boron nitride, silicon carbide, aluminium nitride and gallium nitride nanosheets are directly evaluated from ab-initio reference solutions of the Young’s modulus and the Poisson’s ratio. To this end, the analytical expressions of the elastic constants of a generic monolayer hexagonal diatomic sheet are derived, starting from its sticks-and-springs molecular mechanics model, through proper tools of the homogenization of periodic discrete media. Numerical benchmark assessments are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The effective charge of an atom is defined as the net positive nuclear charge acting on the valence electrons. Roughly speaking, the valence electrons are simultaneously attracted to the positive protons in the nucleus and repelled by the negatively charged inner-layer electrons. For this reason, the valence electrons do not feel the full positive charge of the nucleus.
Within the UFF model [80], the effective charges are used to account for the interactions between pairs of first and second nearest neighbouring atoms.
 
2
In what follows, when dealing with a rotational spring, index a identifies the spring, while indices 1 and 2 identify the elements of the pair of attached sticks (see Fig. 4b).
 
3
Equation (3c) provides a bond angle increase when \({\varvec{i}}_{2a}\cdot {\varvec{n}}_{1a}>0\) as in Fig. 4b.
 
4
It is hardly worth noting that the equilibrium equation against rotation of the stick 5 is a linear combination of the Eq. (12)
 
5
In the figures the balancing moments and not the equivalent moments to the external forces are reported.
 
Literature
2.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSCrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSCrossRef
3.
go back to reference Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRef Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRef
4.
go back to reference Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469CrossRef Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469CrossRef
5.
go back to reference Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT et al (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453ADSCrossRef Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT et al (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453ADSCrossRef
6.
go back to reference Pacilé D, Meyer JC, Girit CO, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membrane. Appl Phys Lett 92:133107ADSCrossRef Pacilé D, Meyer JC, Girit CO, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membrane. Appl Phys Lett 92:133107ADSCrossRef
7.
go back to reference Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215ADSCrossRef Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215ADSCrossRef
8.
go back to reference Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951–3955CrossRef Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951–3955CrossRef
9.
go back to reference Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini SA et al (2013) Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl Phys Lett 103:251605ADSCrossRef Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini SA et al (2013) Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl Phys Lett 103:251605ADSCrossRef
10.
go back to reference Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG et al (1995) Boron nitride nanotubes. Science 269:966–967ADSCrossRef Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG et al (1995) Boron nitride nanotubes. Science 269:966–967ADSCrossRef
11.
go back to reference Li JY, Chen XL, Qiao ZY, Cao YG, Li H (2001) Synthesis of GaN nanotubes. J Mater Sci Lett 20:1987–1988CrossRef Li JY, Chen XL, Qiao ZY, Cao YG, Li H (2001) Synthesis of GaN nanotubes. J Mater Sci Lett 20:1987–1988CrossRef
12.
go back to reference Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV et al (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80:4813ADSCrossRef Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV et al (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80:4813ADSCrossRef
13.
go back to reference Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Le ST et al (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471CrossRef Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Le ST et al (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471CrossRef
14.
go back to reference Kudin KN (2001) C\(_2\)F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef Kudin KN (2001) C\(_2\)F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef
15.
go back to reference Chopra NG, Zettla A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–300ADSCrossRef Chopra NG, Zettla A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–300ADSCrossRef
16.
go back to reference Hernández E, Goze C, Bernier P, Rubio A (2000) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292ADS Hernández E, Goze C, Bernier P, Rubio A (2000) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292ADS
17.
go back to reference Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84:2527ADSCrossRef Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84:2527ADSCrossRef
18.
go back to reference Ouyang T, Chen Y, Xie Y, Yang K, Bao Z, Zhong J (2010) Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21:245701ADSCrossRef Ouyang T, Chen Y, Xie Y, Yang K, Bao Z, Zhong J (2010) Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21:245701ADSCrossRef
19.
go back to reference Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22–49ADSCrossRef Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22–49ADSCrossRef
20.
go back to reference Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432ADSCrossRef Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432ADSCrossRef
21.
go back to reference Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993CrossRef Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993CrossRef
22.
go back to reference Liu B, Jiang H, Johnson HT, Huang Y (2004) The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. J Mech Phys Solids 52:1–26ADSCrossRefMATH Liu B, Jiang H, Johnson HT, Huang Y (2004) The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. J Mech Phys Solids 52:1–26ADSCrossRefMATH
23.
go back to reference Shima H (2012) Buckling of carbon nanotubes: a state of art review. Materials 5:47–84ADSCrossRef Shima H (2012) Buckling of carbon nanotubes: a state of art review. Materials 5:47–84ADSCrossRef
24.
go back to reference Zhang G, Zhang YW (2015) Strain effects on thermoelectric properties of two-dimensional materials. Mech Mater 91:382–398CrossRef Zhang G, Zhang YW (2015) Strain effects on thermoelectric properties of two-dimensional materials. Mech Mater 91:382–398CrossRef
25.
go back to reference Amorim B, Cortijo A, de Juan F, Grushin AG, Guinea F, Gutiérrez-Rubio A et al (2016) Novel effects of strains in graphene and other two dimensional materials. Phys Rep 617:1–54ADSMathSciNetCrossRef Amorim B, Cortijo A, de Juan F, Grushin AG, Guinea F, Gutiérrez-Rubio A et al (2016) Novel effects of strains in graphene and other two dimensional materials. Phys Rep 617:1–54ADSMathSciNetCrossRef
26.
go back to reference Van Lier G (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185ADSCrossRef Van Lier G (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185ADSCrossRef
27.
go back to reference Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17:864–870ADSCrossRef Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17:864–870ADSCrossRef
28.
go back to reference Gamboa A, Vignoles GL, Leyssale JM (2015) On the prediction of graphene’s elastic properties with reactive empirical bond order potential. Carbon 89:176–187CrossRef Gamboa A, Vignoles GL, Leyssale JM (2015) On the prediction of graphene’s elastic properties with reactive empirical bond order potential. Carbon 89:176–187CrossRef
29.
go back to reference Silvestre N, Faria B, Canongia Lopes JN (2012) A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Compos Struct 94:1352–1358CrossRef Silvestre N, Faria B, Canongia Lopes JN (2012) A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Compos Struct 94:1352–1358CrossRef
30.
go back to reference Gillis PP (1984) Calculating the elastic constants of graphite. Carbon 22:387–391CrossRef Gillis PP (1984) Calculating the elastic constants of graphite. Carbon 22:387–391CrossRef
31.
go back to reference Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430ADSCrossRef Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430ADSCrossRef
32.
go back to reference Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH
33.
go back to reference Zhou J, Huang R (2008) Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 56:1609–1623ADSCrossRefMATH Zhou J, Huang R (2008) Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 56:1609–1623ADSCrossRefMATH
34.
go back to reference Xiao JR, Staniszewski J, Gillespie JW Jr (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88:602–609CrossRef Xiao JR, Staniszewski J, Gillespie JW Jr (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88:602–609CrossRef
35.
go back to reference Rossi M, Meo M (2009) On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos Sci Technol 69:1394–1398CrossRef Rossi M, Meo M (2009) On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos Sci Technol 69:1394–1398CrossRef
36.
go back to reference Berinskii IE, Krivtsov AM (2010) On using many-particle interatomic potentials to compute elastic properties of graphene and diamonds. Mech Solids 45:815–883ADSCrossRef Berinskii IE, Krivtsov AM (2010) On using many-particle interatomic potentials to compute elastic properties of graphene and diamonds. Mech Solids 45:815–883ADSCrossRef
37.
go back to reference Bajaj C, Favata A, Podio-Guidugli P (2013) On a nanoscopically-informed shell theory of single-wall carbon nanotubes. Eur J Mech A Solid 42:137–157MathSciNetCrossRef Bajaj C, Favata A, Podio-Guidugli P (2013) On a nanoscopically-informed shell theory of single-wall carbon nanotubes. Eur J Mech A Solid 42:137–157MathSciNetCrossRef
38.
go back to reference Merli R, Lázaro C, Monleón S, Domingo A (2013) A molecular structural mechanics model applied to the static behavior of single-walled carbon nanotubes: new general formulation. Comput Struct 127:68–87CrossRef Merli R, Lázaro C, Monleón S, Domingo A (2013) A molecular structural mechanics model applied to the static behavior of single-walled carbon nanotubes: new general formulation. Comput Struct 127:68–87CrossRef
39.
go back to reference Berinskii IE, Borodich FM (2013) Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 62:60–68CrossRef Berinskii IE, Borodich FM (2013) Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 62:60–68CrossRef
40.
go back to reference Hartmann MK, Todt M, Rammerstorfer FG, Fischer FD (2013) Elastic properties of graphene obtained by computational mechanical tests. EPL 103:68004ADSCrossRef Hartmann MK, Todt M, Rammerstorfer FG, Fischer FD (2013) Elastic properties of graphene obtained by computational mechanical tests. EPL 103:68004ADSCrossRef
41.
go back to reference Ansari R, Mirnezhad M, Sahmani S (2013) An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48:1355–1367MathSciNetCrossRefMATH Ansari R, Mirnezhad M, Sahmani S (2013) An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48:1355–1367MathSciNetCrossRefMATH
42.
go back to reference Hwu C, Yeh YK (2014) Explicit expressions of mechanical properties for graphene sheets and carbon nanotubes via a molecular-continuum model. Appl Phys A Mater Sci Process 116:125–140ADSCrossRef Hwu C, Yeh YK (2014) Explicit expressions of mechanical properties for graphene sheets and carbon nanotubes via a molecular-continuum model. Appl Phys A Mater Sci Process 116:125–140ADSCrossRef
43.
go back to reference Merli R, Lázaro C, Monleón S, Domingo A (2015) Geometrical nonlinear formulation of a Molecular Mechanics model applied to the structural analysis of single-walled carbon nanotubes. Int J Solids Struct 58:157–177CrossRef Merli R, Lázaro C, Monleón S, Domingo A (2015) Geometrical nonlinear formulation of a Molecular Mechanics model applied to the structural analysis of single-walled carbon nanotubes. Int J Solids Struct 58:157–177CrossRef
44.
go back to reference Korobeynikov KN, Alyokhin VV, Annin BD, Babichev AV (2015) Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math Mech Solids 20:836–870MathSciNetCrossRefMATH Korobeynikov KN, Alyokhin VV, Annin BD, Babichev AV (2015) Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math Mech Solids 20:836–870MathSciNetCrossRefMATH
45.
go back to reference Aminpour H, Rizzi NL (2016) On the modelling of carbon nano tubes as generalized continua. In: Altenbach H, Forest S (eds) Generalized continua as models for classical and advanced materials, Springer International Publishing, pp 15–35CrossRef Aminpour H, Rizzi NL (2016) On the modelling of carbon nano tubes as generalized continua. In: Altenbach H, Forest S (eds) Generalized continua as models for classical and advanced materials, Springer International Publishing, pp 15–35CrossRef
46.
go back to reference Merli R, Lázaro C, Monleón S, Domingo A (2017) Energy approach to the unstressed geometry of single walled carbon nanotubes. Meccanica 52:213–230MathSciNetCrossRefMATH Merli R, Lázaro C, Monleón S, Domingo A (2017) Energy approach to the unstressed geometry of single walled carbon nanotubes. Meccanica 52:213–230MathSciNetCrossRefMATH
47.
go back to reference Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2016) Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J Elast 125:1–37MathSciNetCrossRefMATH Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2016) Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J Elast 125:1–37MathSciNetCrossRefMATH
48.
go back to reference Genoese A, Genoese A, Rizzi NL, Salerno G (2017) On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos Part B Eng 115:316–329CrossRef Genoese A, Genoese A, Rizzi NL, Salerno G (2017) On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos Part B Eng 115:316–329CrossRef
49.
go back to reference Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modelling of nano structured materials. Compos Sci Technol 62:1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modelling of nano structured materials. Compos Sci Technol 62:1869–1880CrossRef
50.
go back to reference Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH
51.
go back to reference Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45:43–51CrossRefMATH Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45:43–51CrossRefMATH
52.
go back to reference Torabi H, Shariati M, Sedaghat E, Zadeh AL (2013) Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48:1959–1974CrossRefMATH Torabi H, Shariati M, Sedaghat E, Zadeh AL (2013) Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48:1959–1974CrossRefMATH
53.
go back to reference Silvestre N (2008) Length dependence of critical measures in single-wall carbon nanotubes. Int J Solids Struct 45:4902–4920CrossRefMATH Silvestre N (2008) Length dependence of critical measures in single-wall carbon nanotubes. Int J Solids Struct 45:4902–4920CrossRefMATH
54.
go back to reference Aminpour H, Rizzi NL (2016) A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math Mech Solids 21:168–181MathSciNetCrossRefMATH Aminpour H, Rizzi NL (2016) A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math Mech Solids 21:168–181MathSciNetCrossRefMATH
55.
go back to reference Bažant ZP, Christensen M (1972) Analogy between micropolar continuum and grid frameworks under initial stress. Int J Solids Struct 8:327–346CrossRefMATH Bažant ZP, Christensen M (1972) Analogy between micropolar continuum and grid frameworks under initial stress. Int J Solids Struct 8:327–346CrossRefMATH
57.
go back to reference Kumar RS, McDowell DL (2004) Generalized continuum modelling of 2-D periodic cellular solids. Int J Solids Struct 41:7399–7422CrossRefMATH Kumar RS, McDowell DL (2004) Generalized continuum modelling of 2-D periodic cellular solids. Int J Solids Struct 41:7399–7422CrossRefMATH
58.
go back to reference Pozrikidis C (2008) Mechanics of hexagonal atomic lattices. Int J Solids Struct 45:732–745CrossRefMATH Pozrikidis C (2008) Mechanics of hexagonal atomic lattices. Int J Solids Struct 45:732–745CrossRefMATH
59.
go back to reference Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60:156–171ADSCrossRef Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60:156–171ADSCrossRef
60.
go back to reference Chen Y, Liu XN, Hu GK, Sun QP, Zheng QS (2014) Micropolar continuum modelling of bidimensional tetrachiral lattices. Proc Royal Soc A 470:20130734ADSCrossRef Chen Y, Liu XN, Hu GK, Sun QP, Zheng QS (2014) Micropolar continuum modelling of bidimensional tetrachiral lattices. Proc Royal Soc A 470:20130734ADSCrossRef
61.
go back to reference Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476CrossRef Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476CrossRef
62.
go back to reference Trovalusci P, Pau A (2014) Derivation of microstructured continua from lattice systems via principle of virtual work: the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225:157–177MathSciNetCrossRefMATH Trovalusci P, Pau A (2014) Derivation of microstructured continua from lattice systems via principle of virtual work: the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225:157–177MathSciNetCrossRefMATH
63.
go back to reference Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69–70:195–206CrossRef Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69–70:195–206CrossRef
64.
go back to reference Bacigalupo A, Gambarotta L (2016) Simplified modelling of chiral lattice materials with local resonators. Int J Solids Struct 83:126–141CrossRef Bacigalupo A, Gambarotta L (2016) Simplified modelling of chiral lattice materials with local resonators. Int J Solids Struct 83:126–141CrossRef
65.
go back to reference Li C, Chou T-W (2006) Static and dynamic properties of single-walled boron-nitride nanotubes. J Nanosci Nanotechnol 6:54–60 Li C, Chou T-W (2006) Static and dynamic properties of single-walled boron-nitride nanotubes. J Nanosci Nanotechnol 6:54–60
66.
go back to reference Verma V, Jindal VJ, Dharamvir KL (2007) Elastic moduli of a boron nitride nanotube. Nanotechnology 18:435711ADSCrossRef Verma V, Jindal VJ, Dharamvir KL (2007) Elastic moduli of a boron nitride nanotube. Nanotechnology 18:435711ADSCrossRef
67.
go back to reference Oh ES (2010) Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater Lett 64:859–862CrossRef Oh ES (2010) Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater Lett 64:859–862CrossRef
68.
go back to reference Oh ES (2011) Elastic properties of various boron-nitride structures. Met Mater Int 17:21–27CrossRef Oh ES (2011) Elastic properties of various boron-nitride structures. Met Mater Int 17:21–27CrossRef
69.
go back to reference Jiang L, Guo W (2011) A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J Mech Phys Solids 59:1204–1213ADSMathSciNetCrossRefMATH Jiang L, Guo W (2011) A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J Mech Phys Solids 59:1204–1213ADSMathSciNetCrossRefMATH
70.
go back to reference Blonsky MN, Zhuang HL, Singh AK, Henning RG (2015) Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9:9885–9891CrossRef Blonsky MN, Zhuang HL, Singh AK, Henning RG (2015) Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9:9885–9891CrossRef
71.
go back to reference Giannopoulos GI, Kontoni D-PN, Georgantzinos SK (2016) Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes. Superlattice Microstruct 96:111–120ADSCrossRef Giannopoulos GI, Kontoni D-PN, Georgantzinos SK (2016) Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes. Superlattice Microstruct 96:111–120ADSCrossRef
72.
go back to reference Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes—molecular dynamics simulations. Comput Mater Sci 43:664–669CrossRef Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes—molecular dynamics simulations. Comput Mater Sci 43:664–669CrossRef
73.
go back to reference Setoodeh AR, Jahanshahi M, Attariani H (2009) Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes. Comput Mater Sci 47:388–397CrossRef Setoodeh AR, Jahanshahi M, Attariani H (2009) Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes. Comput Mater Sci 47:388–397CrossRef
74.
go back to reference Le MQ (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11:1458–1464CrossRef Le MQ (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11:1458–1464CrossRef
75.
go back to reference Le MQ (2015) Prediction of the Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int J Mech Mater Des 11:15–24ADSCrossRef Le MQ (2015) Prediction of the Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int J Mech Mater Des 11:15–24ADSCrossRef
76.
go back to reference Le MQ, Nguyen DT (2015) Determination of elastic properties of hexagonal sheets by atomistic finite element method. J Comput Theor Nanosci 12:566–574CrossRef Le MQ, Nguyen DT (2015) Determination of elastic properties of hexagonal sheets by atomistic finite element method. J Comput Theor Nanosci 12:566–574CrossRef
77.
go back to reference Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471ADSCrossRef Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471ADSCrossRef
78.
go back to reference Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802ADSCrossRef Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802ADSCrossRef
79.
go back to reference Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM et al (1995) A second-generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5187CrossRef Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM et al (1995) A second-generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5187CrossRef
80.
go back to reference Rappé AK, Casewit CJ, Colwell KS, Gottard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRef Rappé AK, Casewit CJ, Colwell KS, Gottard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRef
81.
go back to reference Salerno G, de Felice G (2000) Continuum modeling of discrete systems: a variational approach. In: proceedings ECCOMAS Salerno G, de Felice G (2000) Continuum modeling of discrete systems: a variational approach. In: proceedings ECCOMAS
82.
go back to reference Salerno G, de Felice G (2009) Continuum modeling of periodic brickwork. Int J Solids Struct 46:1251–1267CrossRefMATH Salerno G, de Felice G (2009) Continuum modeling of periodic brickwork. Int J Solids Struct 46:1251–1267CrossRefMATH
Metadata
Title
Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization
Authors
Alessandra Genoese
Andrea Genoese
Nicola Luigi Rizzi
Ginevra Salerno
Publication date
17-05-2017
Publisher
Springer Netherlands
Published in
Meccanica / Issue 3/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0686-1

Other articles of this Issue 3/2018

Meccanica 3/2018 Go to the issue

Recent Advances on the Mechanics of Materials

Parametric design of the band structure for lattice materials

Recent Advances on the Mechanics of Materials

Spontaneous bending of pre-stretched bilayers

Recent Advances on the Mechanics of Materials

Viscoelastic modeling of articular cartilage under impact loading

Premium Partners