Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2021

22-10-2020 | Original Article

Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments

Authors: Kundong Wang, Jianyun Liu, Weiwu Yan, Qingsheng Lu, Shengdong Nie

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Robotic endovascular intervention system (REIS) has the advantages of telemanipulation without radiation damage, precise location, and isolation of hand quiver. However, current REIS lacks a force feedback, which leads to high clinical risks. For the high operational safety of remote operations, this research proposes a force feedback control method for a novel manipulator with multi-grippers and develops a prototype to verify its expected telepresence.

Methods

A high-resolution force sensor is used to acquire and transmit the intervention resistance force to the control handle. When the handle is translated or rotated, a loading mechanism composed of a servomotor, a screw pair, a spring, and friction roller generates the resistance force transmitted to the doctor’s hand through the handle. A force/displacement hybrid control and PID control algorithm are used for the smaller feedback force error and lower delay.

Results

This manipulator and its control handle are tested in the simulated catheter and vascular cases. The experiments show that force feedback precision can reach 0.05 N and the delay is not more than 50 ms, and the bandwidth is 9 Hz@-3 dB.

Conclusion

The proposed force feedback method can recreate resistance force from the intervention devices. The control model is valid with higher precision and wide bands, which has laid foundations to the application of REIS in clinic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Antoniou G, Riga CV, Mayer EK, Cheshire NW, Bicknell CD (2011) Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg 52:493–499CrossRef Antoniou G, Riga CV, Mayer EK, Cheshire NW, Bicknell CD (2011) Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg 52:493–499CrossRef
2.
go back to reference Rafii-Tari H, Payne CJ, Yang GZ (2013) Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 42:697–715CrossRef Rafii-Tari H, Payne CJ, Yang GZ (2013) Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 42:697–715CrossRef
3.
go back to reference Armacost MP, Adair J, Munger T (2007) Accurate and reproducible target navigation with the stereotaxis Niobe magnetic navigation system. Cardiovasc Electrophysiol 18:26–31CrossRef Armacost MP, Adair J, Munger T (2007) Accurate and reproducible target navigation with the stereotaxis Niobe magnetic navigation system. Cardiovasc Electrophysiol 18:26–31CrossRef
4.
go back to reference Paolo D, Eugenio G (1996) Robotics for medical applications. IEEE Robot Autom Mag 3:44–56CrossRef Paolo D, Eugenio G (1996) Robotics for medical applications. IEEE Robot Autom Mag 3:44–56CrossRef
5.
go back to reference Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB (2011) First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv 4:460–465CrossRef Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB (2011) First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv 4:460–465CrossRef
6.
go back to reference Yogesh T, Jeffrey SB, Holdsworth WD, Drangova M (2009) Design and performance evaluation of a remote catheter navigation system. IEEE Trans Biomed Eng 56:1901–1908CrossRef Yogesh T, Jeffrey SB, Holdsworth WD, Drangova M (2009) Design and performance evaluation of a remote catheter navigation system. IEEE Trans Biomed Eng 56:1901–1908CrossRef
7.
go back to reference Thakur Y, Holdsworth WD, Drangova M (2009) Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans Biomed Eng 56:2140–2143CrossRef Thakur Y, Holdsworth WD, Drangova M (2009) Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans Biomed Eng 56:2140–2143CrossRef
8.
go back to reference Park JW, Choi J, Park HN, Song SJ, Lee JC, Park Y, Shin SM, Sun K (2010) Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif Organs 34:1034–1039CrossRef Park JW, Choi J, Park HN, Song SJ, Lee JC, Park Y, Shin SM, Sun K (2010) Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif Organs 34:1034–1039CrossRef
9.
go back to reference Lu WS, Xu W, Pan F, Liu D, Tian ZM, Zeng Y (2016) Clinical application of a vascular interventional robot in cerebral angiography. Int J Med Robot Comput Assist Surg 12:132–136CrossRef Lu WS, Xu W, Pan F, Liu D, Tian ZM, Zeng Y (2016) Clinical application of a vascular interventional robot in cerebral angiography. Int J Med Robot Comput Assist Surg 12:132–136CrossRef
10.
go back to reference Peirs J, Clijnena J, Reynaertsa D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A Phys 115:447–455CrossRef Peirs J, Clijnena J, Reynaertsa D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A Phys 115:447–455CrossRef
11.
go back to reference Guo J, Guo SX, Yu Y (2016) Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed Microdevices 18:76–92CrossRef Guo J, Guo SX, Yu Y (2016) Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed Microdevices 18:76–92CrossRef
12.
go back to reference Guo J, Guo SX, Wang P, Wei W, Wang Y (2013) A novel type of catheter sidewall tactile sensor array for vascular interventional surgery. In: 2013 ICME international conference on complex medical engineering. pp 264–267 Guo J, Guo SX, Wang P, Wei W, Wang Y (2013) A novel type of catheter sidewall tactile sensor array for vascular interventional surgery. In: 2013 ICME international conference on complex medical engineering. pp 264–267
13.
go back to reference Hu Z, Yoon CH, Park SB, Jo YH (2016) Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot. Int J CARS 11:1361–1369CrossRef Hu Z, Yoon CH, Park SB, Jo YH (2016) Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot. Int J CARS 11:1361–1369CrossRef
14.
go back to reference Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2013) Force-detecting gripper and force feedback system for neurosurgery applications. Int J CARS 8:819–829CrossRef Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2013) Force-detecting gripper and force feedback system for neurosurgery applications. Int J CARS 8:819–829CrossRef
15.
go back to reference Srimathveeravalli G, Kesavadas T, Li X (2010) Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int J Med Robot Comput Assist Surg 6:160–170 Srimathveeravalli G, Kesavadas T, Li X (2010) Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int J Med Robot Comput Assist Surg 6:160–170
16.
go back to reference Payne CJ, Ra-Tari H, Yang GZ (2012) A force feedback system for endovascular catheterization. In: 2012 IEEE/RSJ international conference on intelligent robotics and systems. pp 1298–1304 Payne CJ, Ra-Tari H, Yang GZ (2012) A force feedback system for endovascular catheterization. In: 2012 IEEE/RSJ international conference on intelligent robotics and systems. pp 1298–1304
17.
go back to reference Kesner SB, Howe RD (2011) Position control of motion compensation cardiac catheters. IEEE Trans Robot 27:1045–1055CrossRef Kesner SB, Howe RD (2011) Position control of motion compensation cardiac catheters. IEEE Trans Robot 27:1045–1055CrossRef
18.
go back to reference Kesner SB, Howe RD (2011) Force control of flexible catheter robots for beating heart surgery. In: Proceedings of the 2011 IEEE international conference on robotics and automation. IEEE, Shanghai, China, pp 1589–1594 Kesner SB, Howe RD (2011) Force control of flexible catheter robots for beating heart surgery. In: Proceedings of the 2011 IEEE international conference on robotics and automation. IEEE, Shanghai, China, pp 1589–1594
19.
go back to reference Razban M, Dargahi J, Boulet B (2018) A sensor-less catheter contact force estimation approach in endovascular intervention procedures. In: 2018 IEEE/RSJ international conference on intelligent robotics and systems. pp 2100–2106 Razban M, Dargahi J, Boulet B (2018) A sensor-less catheter contact force estimation approach in endovascular intervention procedures. In: 2018 IEEE/RSJ international conference on intelligent robotics and systems. pp 2100–2106
20.
go back to reference Zhang L, Guo SX, Yu H, Song Y, Song D (2018) Rotary encoder-based position transmission and feedback of a novel robotic catheter system for endovascular catheterization. In: 2018 IEEE international conference on information and automation. pp 32–36 Zhang L, Guo SX, Yu H, Song Y, Song D (2018) Rotary encoder-based position transmission and feedback of a novel robotic catheter system for endovascular catheterization. In: 2018 IEEE international conference on information and automation. pp 32–36
21.
go back to reference Dagnino G, Liu J, Abdelaziz ME, Chi W, Riga C, Yang GZ (2018) Haptic feedback and dynamic active constraints for robot assisted endovascular catheterization. In: 2018 IEEE/RSJ international conference on intelligent robotics and systems. pp 1770–1775 Dagnino G, Liu J, Abdelaziz ME, Chi W, Riga C, Yang GZ (2018) Haptic feedback and dynamic active constraints for robot assisted endovascular catheterization. In: 2018 IEEE/RSJ international conference on intelligent robotics and systems. pp 1770–1775
22.
go back to reference Patel TM, Shah SC, Pancholy SB (2019) Long distance tele-robotic assisted percutaneous coronary intervention: a report of first-in-human experience. E Clin Med 14:53–58 Patel TM, Shah SC, Pancholy SB (2019) Long distance tele-robotic assisted percutaneous coronary intervention: a report of first-in-human experience. E Clin Med 14:53–58
23.
go back to reference Molinero MB, Dagnino G, Liu J, Chi W (2019) Haptic guidance for robot-assisted endovascular procedures: implementation and evaluation on surgical simulator. In: 2019 international conference on intelligent robotics and systems. pp 5398–5403 Molinero MB, Dagnino G, Liu J, Chi W (2019) Haptic guidance for robot-assisted endovascular procedures: implementation and evaluation on surgical simulator. In: 2019 international conference on intelligent robotics and systems. pp 5398–5403
24.
go back to reference Shigeru M, Yoshitaka N, Takahide H (2019) Support robot with sensory-motor feedback system for neuro-endovascular novel operation intervention. World Neurosurg 127:e617–e623CrossRef Shigeru M, Yoshitaka N, Takahide H (2019) Support robot with sensory-motor feedback system for neuro-endovascular novel operation intervention. World Neurosurg 127:e617–e623CrossRef
26.
go back to reference Liu L, Cao L, Liu D, Wang D, Cao XD (2014) Achieving for force feedback in master–slave vascular intervention systems. High Technol Lett 24:545–550 Liu L, Cao L, Liu D, Wang D, Cao XD (2014) Achieving for force feedback in master–slave vascular intervention systems. High Technol Lett 24:545–550
27.
go back to reference He CD, Sen W, Zhang HF (2000) Study on reaction time and movement time of fingers. Ergonomics 6:1–5 He CD, Sen W, Zhang HF (2000) Study on reaction time and movement time of fingers. Ergonomics 6:1–5
Metadata
Title
Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments
Authors
Kundong Wang
Jianyun Liu
Weiwu Yan
Qingsheng Lu
Shengdong Nie
Publication date
22-10-2020
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2021
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-020-02278-w

Other articles of this Issue 1/2021

International Journal of Computer Assisted Radiology and Surgery 1/2021 Go to the issue

Premium Partner