Skip to main content
Top

2024 | OriginalPaper | Chapter

7. Forecasting-Aided State Estimation

Author : Milton Brown Do Coutto Filho

Published in: Power System State Estimation and Forecasting

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter deals with the problem of integrating forecasting techniques with power system state estimation (SE) algorithms. Forecasting-aided state estimation (FASE) has been proposed as an attractive alternative to overcome some issues in the traditional SE. Different strategies for creating a forecasting step in the SE process are devised. Modeling aspects regarding the establishment of a discrete-time state transition model are addressed. Concerning data validation, an innovation analysis is advocated. An example elucidates its application. The innovation is determined by the difference between a measurement just received and its forecasted value. The chapter can be seen as a guide to using a predictive database to enhance the estimation process, regarding, for instance, observability and extended WLS SE filtering. Throughout the chapter, main achievements of the FASE approach are addressed. The chapter ends with a section on advanced topics followed by proposed problems and a list of references.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Minsky, The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind (Simon & Schuster, New York, 2006) M. Minsky, The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind (Simon & Schuster, New York, 2006)
2.
go back to reference M.B.D.C. Filho, J.D. Glover, A.M.L. da Silva, State estimators with forecasting capability, in Proceedings of 11th Power Systems Computation Conference (PSCC), vol. II, (Avignon, France, 1993), pp. 689–695 M.B.D.C. Filho, J.D. Glover, A.M.L. da Silva, State estimators with forecasting capability, in Proceedings of 11th Power Systems Computation Conference (PSCC), vol. II, (Avignon, France, 1993), pp. 689–695
3.
go back to reference J. Zhao et al., Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Trans. Power Syst. 34(4), 3188–3198 (2019)CrossRef J. Zhao et al., Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Trans. Power Syst. 34(4), 3188–3198 (2019)CrossRef
4.
go back to reference G. Cheng, Y. Lin, A. Abur, A. Gómez-Expósito, W. Wu, A survey of power system state estimation using multiple data sources: PMUs, SCADA, AMI, and beyond. IEEE Trans. Smart Grid 15(1), 1129–1151 (2024)CrossRef G. Cheng, Y. Lin, A. Abur, A. Gómez-Expósito, W. Wu, A survey of power system state estimation using multiple data sources: PMUs, SCADA, AMI, and beyond. IEEE Trans. Smart Grid 15(1), 1129–1151 (2024)CrossRef
5.
go back to reference C. Chatfield, The Analysis of Time Series: An Introduction, 6th edn. (Boca Raton, 2004) C. Chatfield, The Analysis of Time Series: An Introduction, 6th edn. (Boca Raton, 2004)
6.
go back to reference A. Debs, R.E. Larson, A dynamic estimator for tracking the state of a power system. IEEE Trans. Power App. Syst. PAS-89(7), 1670–1678 (1970)CrossRef A. Debs, R.E. Larson, A dynamic estimator for tracking the state of a power system. IEEE Trans. Power App. Syst. PAS-89(7), 1670–1678 (1970)CrossRef
7.
go back to reference R.D. Masiello, F.C. Schweppe, A tracking static state estimator. IEEE Trans. Power App. Syst. PAS-90, 1025–1033 (1970) R.D. Masiello, F.C. Schweppe, A tracking static state estimator. IEEE Trans. Power App. Syst. PAS-90, 1025–1033 (1970)
8.
go back to reference D.M. Falcão, P.A. Cooke, A. Brameller, Power system tracking state estimation and bad data processing. IEEE Trans. Power App. Syst. PAS-101, 325–333 (1982)CrossRef D.M. Falcão, P.A. Cooke, A. Brameller, Power system tracking state estimation and bad data processing. IEEE Trans. Power App. Syst. PAS-101, 325–333 (1982)CrossRef
9.
go back to reference R.J. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (Springer, 2008)CrossRef R.J. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (Springer, 2008)CrossRef
10.
go back to reference A.M. Leite da Silva, M.B.D.C. Filho, J.F. de Queiroz, State forecasting in electric power systems. IET Proc. C – Gener. Transm. Distrib. 130, 237–244 (1983)CrossRef A.M. Leite da Silva, M.B.D.C. Filho, J.F. de Queiroz, State forecasting in electric power systems. IET Proc. C – Gener. Transm. Distrib. 130, 237–244 (1983)CrossRef
11.
go back to reference A.M. Leite da Silva, M.B.D.C. Filho, J.M.C. Cantera, An efficient dynamic state estimation including bad data processing. IEEE Trans. Power Syst. PWRS-2, 1050–1058 (1987)CrossRef A.M. Leite da Silva, M.B.D.C. Filho, J.M.C. Cantera, An efficient dynamic state estimation including bad data processing. IEEE Trans. Power Syst. PWRS-2, 1050–1058 (1987)CrossRef
12.
go back to reference M.B.D.C. Filho, J.C.S. de Souza, Forecasting-aided state estimation-part I: Panorama. IEEE Trans. Power Syst. 24(4), 1667–1677 (2009)CrossRef M.B.D.C. Filho, J.C.S. de Souza, Forecasting-aided state estimation-part I: Panorama. IEEE Trans. Power Syst. 24(4), 1667–1677 (2009)CrossRef
13.
go back to reference M.B.D.C. Filho, J.C.S. de Souza, R.S. Freund, Forecasting-aided state estimation-part II: Implementation. IEEE Trans. Power Syst. 24(4), 1678–1685 (2009)CrossRef M.B.D.C. Filho, J.C.S. de Souza, R.S. Freund, Forecasting-aided state estimation-part II: Implementation. IEEE Trans. Power Syst. 24(4), 1678–1685 (2009)CrossRef
14.
go back to reference S. Makridakis, S.C. Wheelwright, R.J. Hyndman, Forecasting: Methods and Applications, 3rd edn. (Wiley, 1998) S. Makridakis, S.C. Wheelwright, R.J. Hyndman, Forecasting: Methods and Applications, 3rd edn. (Wiley, 1998)
15.
go back to reference J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods, 2nd edn. (Oxford, 2012) J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods, 2nd edn. (Oxford, 2012)
16.
go back to reference K. Nishiya, J. Hasegawa, T. Koike, Dynamic state estimation including anomaly detection and identification for power systems. IET Proc. C - Gener. Transm. Distrib. 129(5), 192–198 (1982)CrossRef K. Nishiya, J. Hasegawa, T. Koike, Dynamic state estimation including anomaly detection and identification for power systems. IET Proc. C - Gener. Transm. Distrib. 129(5), 192–198 (1982)CrossRef
17.
go back to reference M.B.D.C. Filho, A.M.L. da Silva, J.M.C. Cantera, R.A. da Silva, Information debugging for real-time power systems monitoring. IET Proc. C - Gener. Transm. Distrib. 136(3), 145–152 (1989)CrossRef M.B.D.C. Filho, A.M.L. da Silva, J.M.C. Cantera, R.A. da Silva, Information debugging for real-time power systems monitoring. IET Proc. C - Gener. Transm. Distrib. 136(3), 145–152 (1989)CrossRef
18.
go back to reference A. Monticelli, State Estimation in Electric Power Systems: A Generalized Approach (Kluwer Academic Press, 1999)CrossRef A. Monticelli, State Estimation in Electric Power Systems: A Generalized Approach (Kluwer Academic Press, 1999)CrossRef
19.
go back to reference A. Abur, A.G. Expósito, Power System State Estimation: Theory and Implementation (Marcel Decker, 2004)CrossRef A. Abur, A.G. Expósito, Power System State Estimation: Theory and Implementation (Marcel Decker, 2004)CrossRef
20.
go back to reference M.B.D.C. Filho, J.C.S. de Souza, R.S.G. Mattos, M.T. Schilling, Revealing gross errors in critical measurements and sets via forecasting-aided state estimators. Int. J. Elect. Power Syst. Res. 57(1), 25–32 (2001)CrossRef M.B.D.C. Filho, J.C.S. de Souza, R.S.G. Mattos, M.T. Schilling, Revealing gross errors in critical measurements and sets via forecasting-aided state estimators. Int. J. Elect. Power Syst. Res. 57(1), 25–32 (2001)CrossRef
21.
go back to reference A.S. Debs, Modern Power Systems Control and Operation (Kluwer, Boston, 1988)CrossRef A.S. Debs, Modern Power Systems Control and Operation (Kluwer, Boston, 1988)CrossRef
22.
go back to reference A.P. Alves da Silva, A.M. Leite da Silva, J.C. Stacchini de Souza, M.B.D.C. Filho, State forecasting based on artificial neural networks, in Proceedings of 11th Power Systems Computation Conference (PSCC), vol. I, (Avignon, France, 1993), pp. 461–468 A.P. Alves da Silva, A.M. Leite da Silva, J.C. Stacchini de Souza, M.B.D.C. Filho, State forecasting based on artificial neural networks, in Proceedings of 11th Power Systems Computation Conference (PSCC), vol. I, (Avignon, France, 1993), pp. 461–468
23.
go back to reference J. Fulcher, L. C. Jain (eds.), Computational Intelligence: A Compendium, Studies in Computational Intelligence (SCI), vol. 115 (Springer, Warsaw, 2008) J. Fulcher, L. C. Jain (eds.), Computational Intelligence: A Compendium, Studies in Computational Intelligence (SCI), vol. 115 (Springer, Warsaw, 2008)
24.
go back to reference S. Ramasamy, K. Ganesan, B. Koodalsamy, Artificial intelligence-based state estimation in power system and phasor measurement units. Electr. Power Compon. Syst. 1–14 (2023) S. Ramasamy, K. Ganesan, B. Koodalsamy, Artificial intelligence-based state estimation in power system and phasor measurement units. Electr. Power Compon. Syst. 1–14 (2023)
25.
go back to reference J.C. Stacchini de Souza, A.M. Leite da Silva, A.P. Alves da Silva, Data visualisation and identification of anomalies in power system state estimation using artificial neural networks. IEE Proc. Gener. Trans. Distrib. 144(5), 445 (1997)CrossRef J.C. Stacchini de Souza, A.M. Leite da Silva, A.P. Alves da Silva, Data visualisation and identification of anomalies in power system state estimation using artificial neural networks. IEE Proc. Gener. Trans. Distrib. 144(5), 445 (1997)CrossRef
26.
go back to reference M.B.D.C. Filho, J.C.S. de Souza, M.T. Schilling, Generating High Quality Pseudo-Measurements to Keep State Estimation Capabilities (IEEE Power Tech, Lausanne. paper ID 139, 2007), pp. 1829–1834 M.B.D.C. Filho, J.C.S. de Souza, M.T. Schilling, Generating High Quality Pseudo-Measurements to Keep State Estimation Capabilities (IEEE Power Tech, Lausanne. paper ID 139, 2007), pp. 1829–1834
27.
go back to reference J. Zhao, G. Zhang, M. La Scala, et al., Short-term state forecasting-aided method for detection of smart grid general false data injection attacks. IEEE Trans Smart Grid 8(4), 1580–1590 (2017)CrossRef J. Zhao, G. Zhang, M. La Scala, et al., Short-term state forecasting-aided method for detection of smart grid general false data injection attacks. IEEE Trans Smart Grid 8(4), 1580–1590 (2017)CrossRef
28.
go back to reference R. Singh, B.C. Pal, R.A. Jabr, Choice of estimator for distribution system state estimation. IET Gen. Trans. Distrib. 3(7), 666–678 (2009)CrossRef R. Singh, B.C. Pal, R.A. Jabr, Choice of estimator for distribution system state estimation. IET Gen. Trans. Distrib. 3(7), 666–678 (2009)CrossRef
29.
go back to reference A. Primadianto, C.N. Lu, A review on distribution system state estimation. IEEE Trans. Power Syst. 32(5), 3875–3883 (2017)CrossRef A. Primadianto, C.N. Lu, A review on distribution system state estimation. IEEE Trans. Power Syst. 32(5), 3875–3883 (2017)CrossRef
30.
go back to reference M. Baran, T.E. McDermott, Distribution system state estimation using AMI data, in IEEE Power Systems Conference and Exposition (PSCE), (Seattle, WA, USA, 2009), pp. 1–3 M. Baran, T.E. McDermott, Distribution system state estimation using AMI data, in IEEE Power Systems Conference and Exposition (PSCE), (Seattle, WA, USA, 2009), pp. 1–3
31.
go back to reference G. Yuanqi, N. Yu, State estimation for unbalanced electric power distribution systems using AMI data, in Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), (Washington, DC, USA, 2017), pp. 1–5 G. Yuanqi, N. Yu, State estimation for unbalanced electric power distribution systems using AMI data, in Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), (Washington, DC, USA, 2017), pp. 1–5
32.
go back to reference J. Boás Leite, J.R.S. Mantovani, Distribution system state estimation using the Hamiltonian cycle theory. IEEE Trans. Smart Grid 7(1), 366–375 (2016)CrossRef J. Boás Leite, J.R.S. Mantovani, Distribution system state estimation using the Hamiltonian cycle theory. IEEE Trans. Smart Grid 7(1), 366–375 (2016)CrossRef
33.
go back to reference C. Gomez-Quiles, A.G. Expósito, A.V. Jaen, State estimation for smart distribution substations. IEEE Trans. Smart Grid 3(2), 986–995 (2012)CrossRef C. Gomez-Quiles, A.G. Expósito, A.V. Jaen, State estimation for smart distribution substations. IEEE Trans. Smart Grid 3(2), 986–995 (2012)CrossRef
34.
go back to reference A. Gómez Expósito, C. Gómez-Quiles, I. Džafić, State estimation in two time scales for smart distribution systems. IEEE Trans. Smart Grid 6(1), 421–430 (2015)CrossRef A. Gómez Expósito, C. Gómez-Quiles, I. Džafić, State estimation in two time scales for smart distribution systems. IEEE Trans. Smart Grid 6(1), 421–430 (2015)CrossRef
35.
go back to reference I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016) I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
36.
go back to reference Y.F. Huang, S. Werner, J. Huang, et al., State estimation in electrical power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 29(5), 33–43 (2012)CrossRef Y.F. Huang, S. Werner, J. Huang, et al., State estimation in electrical power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 29(5), 33–43 (2012)CrossRef
Metadata
Title
Forecasting-Aided State Estimation
Author
Milton Brown Do Coutto Filho
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-63288-4_7