Skip to main content
Top

2024 | OriginalPaper | Chapter

Forecasting Electricity Prices for the Feasibility of Renewable Energy Plants

Authors : Bucan Türkmen, Sena Kır, Nermin Ceren Türkmen

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical role of accurate electricity price forecasting in the feasibility of renewable energy plants. It begins by highlighting the environmental impacts of industrial consumption and the subsequent push towards renewable energy sources. The study focuses on the Turkish energy market, where renewable energy production has been steadily increasing. The authors discuss the importance of forecasting future electricity prices to assess the net cash inflow, return on investment, and profitability of renewable energy projects. They review various electricity price forecasting methods, including multi-agent models, fundamental models, and statistical models. The chapter introduces the Prophet algorithm, which combines trends, seasonality, and events to generate accurate predictions and estimate uncertainties. The study compares the accuracy of forecasts from the Python Prophet and an Excel Estimator, using historical data from the Turkish energy market. The chapter concludes by emphasizing the need for reliable price forecasting to guide strategic planning and investment decisions in the renewable energy sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Chiang, C.H., Young, C.H.: An engineering project for a flood detention pond surface-type floating photovoltaic power generation system with an installed capacity of 32,600.88 kWp. Energy Rep. 8, 2219–2232 (2022)CrossRef Chiang, C.H., Young, C.H.: An engineering project for a flood detention pond surface-type floating photovoltaic power generation system with an installed capacity of 32,600.88 kWp. Energy Rep. 8, 2219–2232 (2022)CrossRef
3.
go back to reference Gonzalez-Rodriguez, A.G.: Review of offshore wind farm cost components. Energy Sustain. Dev. 37, 10–19 (2017)CrossRef Gonzalez-Rodriguez, A.G.: Review of offshore wind farm cost components. Energy Sustain. Dev. 37, 10–19 (2017)CrossRef
4.
go back to reference Taktak, F., Ilı, M.: Güneş enerji santrali (GES) geliştirme: Uşak örneği. Geomatik 3, 1–21 (2018). (In Turkish)CrossRef Taktak, F., Ilı, M.: Güneş enerji santrali (GES) geliştirme: Uşak örneği. Geomatik 3, 1–21 (2018). (In Turkish)CrossRef
5.
go back to reference Bayrakçı, H.C., Gezer, T.: Bir güneş enerjisi santralinin maliyet analizi: Aydın ili örneği. Teknik Bilimler Dergisi 9, 46–54 (2019). (In Turkish)CrossRef Bayrakçı, H.C., Gezer, T.: Bir güneş enerjisi santralinin maliyet analizi: Aydın ili örneği. Teknik Bilimler Dergisi 9, 46–54 (2019). (In Turkish)CrossRef
6.
go back to reference Elibüyük, U., Yakut, A.K., Üçgül, İ.: Süleyman Demirel Üniversitesi rüzgâr enerjisi santrali projesi. Yekarum 3 (2016) Elibüyük, U., Yakut, A.K., Üçgül, İ.: Süleyman Demirel Üniversitesi rüzgâr enerjisi santrali projesi. Yekarum 3 (2016)
7.
go back to reference Lago, J., Marcjasz, G., De Schutter, B., Weron, R.: Forecasting day-ahead electricity prices: a review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 293, 116983 (2021)CrossRef Lago, J., Marcjasz, G., De Schutter, B., Weron, R.: Forecasting day-ahead electricity prices: a review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 293, 116983 (2021)CrossRef
8.
go back to reference Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30, 1030–1081 (2014)CrossRef Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30, 1030–1081 (2014)CrossRef
9.
go back to reference Nowotarski, J., Weron, R.: Recent advances in electricity price forecasting: a review of probabilistic forecasting. Renew. Sustain. Energy Rev. 81, 1548–1568 (2018)CrossRef Nowotarski, J., Weron, R.: Recent advances in electricity price forecasting: a review of probabilistic forecasting. Renew. Sustain. Energy Rev. 81, 1548–1568 (2018)CrossRef
10.
go back to reference Kostrzewski, M., Kostrzewska, J.: Probabilistic electricity price forecasting with Bayesian stochastic volatility models. Energy Econ. 80, 610–620 (2019)CrossRef Kostrzewski, M., Kostrzewska, J.: Probabilistic electricity price forecasting with Bayesian stochastic volatility models. Energy Econ. 80, 610–620 (2019)CrossRef
11.
go back to reference Česnavičius, M.: Lithuanian electricity market price forecasting model based on univariate time series analysis. Energetika 66 (2020) Česnavičius, M.: Lithuanian electricity market price forecasting model based on univariate time series analysis. Energetika 66 (2020)
12.
go back to reference Jan, F., Shah, Ismail, Ali, Sajid: Short-term electricity prices forecasting using functional time series analysis. Energies 15(9), 3423 (2022)CrossRef Jan, F., Shah, Ismail, Ali, Sajid: Short-term electricity prices forecasting using functional time series analysis. Energies 15(9), 3423 (2022)CrossRef
13.
go back to reference Wang, D., Gryshova, I., Kyzym, M., Salashenko, T., Khaustova, V., Shcherbata, M.: Electricity price instability over time: time series analysis and forecasting. Sustainability 14(15), 9081 (2022)CrossRef Wang, D., Gryshova, I., Kyzym, M., Salashenko, T., Khaustova, V., Shcherbata, M.: Electricity price instability over time: time series analysis and forecasting. Sustainability 14(15), 9081 (2022)CrossRef
14.
go back to reference Karabiber, O.A., Xydis, G.: Electricity price forecasting in the Danish day-ahead market using the TBATS, ANN and ARIMA methods. Energies 12, 928 (2019)CrossRef Karabiber, O.A., Xydis, G.: Electricity price forecasting in the Danish day-ahead market using the TBATS, ANN and ARIMA methods. Energies 12, 928 (2019)CrossRef
15.
go back to reference Bitirgen, K., Filik, Ü.B.: Electricity price forecasting based on XGBooST and ARIMA Algorithms”. BSEU J. Eng. Res. Technol. 1, 7–13 (2020) Bitirgen, K., Filik, Ü.B.: Electricity price forecasting based on XGBooST and ARIMA Algorithms”. BSEU J. Eng. Res. Technol. 1, 7–13 (2020)
16.
go back to reference Kuo, Ping-Huan., Huang, Chiou-Jye.: An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 10(4), 1280 (2018)CrossRef Kuo, Ping-Huan., Huang, Chiou-Jye.: An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 10(4), 1280 (2018)CrossRef
17.
go back to reference Mohamed, A.T., Aly, H.H., Little, T.A.: Locational marginal price forecasting based on deep neural networks and prophet techniques. In: IEEE Electrical Power and Energy Conference (EPEC), pp. 1–6 (2021) Mohamed, A.T., Aly, H.H., Little, T.A.: Locational marginal price forecasting based on deep neural networks and prophet techniques. In: IEEE Electrical Power and Energy Conference (EPEC), pp. 1–6 (2021)
18.
go back to reference Cheng, H., Ding, X., Zhou, W., Ding, R.: A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 110, 653–666 (2019)CrossRef Cheng, H., Ding, X., Zhou, W., Ding, R.: A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 110, 653–666 (2019)CrossRef
19.
go back to reference Zhang, J., Tan, Z., Wei, Y.: An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 258, 114087 (2020)CrossRef Zhang, J., Tan, Z., Wei, Y.: An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 258, 114087 (2020)CrossRef
20.
go back to reference Xiong, X., Qing, G.: A hybrid day-ahead electricity price forecasting framework based on time series. Energy 264, 126099 (2023)CrossRef Xiong, X., Qing, G.: A hybrid day-ahead electricity price forecasting framework based on time series. Energy 264, 126099 (2023)CrossRef
21.
go back to reference Shohan, M.J.A., Faruque, M.O., Foo, S.Y.: Forecasting of electric load using a hybrid LSTM-neural prophet model. Energies 15(6), 2158 (2022)CrossRef Shohan, M.J.A., Faruque, M.O., Foo, S.Y.: Forecasting of electric load using a hybrid LSTM-neural prophet model. Energies 15(6), 2158 (2022)CrossRef
22.
go back to reference Duarte, D., Faerman, J.: Comparison of time series prediction of healthcare emergency department indicators with ARIMA and Prophet. In: Computer Science & Information Technology (CS & IT) Computer Science Conference, pp. 123, 33 (2019) Duarte, D., Faerman, J.: Comparison of time series prediction of healthcare emergency department indicators with ARIMA and Prophet. In: Computer Science & Information Technology (CS & IT) Computer Science Conference, pp. 123, 33 (2019)
23.
go back to reference Zhao, N., Liu, Y., Vanos, J.K., Cao, Guofeng: Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the prophet procedure. Atmos. Environ. 192, 116–127 (2018)CrossRef Zhao, N., Liu, Y., Vanos, J.K., Cao, Guofeng: Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the prophet procedure. Atmos. Environ. 192, 116–127 (2018)CrossRef
24.
go back to reference Regis Anne, W., Carolin Jeeva, S.: Machine learning modeling techniques and statistical projections to predict the outbreak of COVID-19 with implication to India. In: Lessons From COVID-19, pp. 289–311. Elsevier (2022)CrossRef Regis Anne, W., Carolin Jeeva, S.: Machine learning modeling techniques and statistical projections to predict the outbreak of COVID-19 with implication to India. In: Lessons From COVID-19, pp. 289–311. Elsevier (2022)CrossRef
25.
go back to reference Chadalavada, R.J., Raghavendra, S., Rekha, V.: Electricity requirement prediction using time series and facebook’s prophet. Indian J. Sci. Technol. 13, 4631–4645 (2020)CrossRef Chadalavada, R.J., Raghavendra, S., Rekha, V.: Electricity requirement prediction using time series and facebook’s prophet. Indian J. Sci. Technol. 13, 4631–4645 (2020)CrossRef
26.
go back to reference Chen, H., Li, B., Wang, C., Liu, L.: A new multi-step forecasting model for energy price based on improved PSR-BP neural network. IEEE Access 6, 52789–52799 (2018) Chen, H., Li, B., Wang, C., Liu, L.: A new multi-step forecasting model for energy price based on improved PSR-BP neural network. IEEE Access 6, 52789–52799 (2018)
27.
go back to reference Kumar, S., Jain, V., Kumar, D.: A hybrid machine learning approach for daily electricity price forecasting. IEEE Trans. Power Syst. 35(1), 43–55 (2020) Kumar, S., Jain, V., Kumar, D.: A hybrid machine learning approach for daily electricity price forecasting. IEEE Trans. Power Syst. 35(1), 43–55 (2020)
28.
go back to reference Pereira, T., Silva, T., Mourelle, D.P.B., Guimarães, A., Sá, A.: A machine learning approach for wind power forecast. In: IEEE Milan PowerTech, pp. 1–6. Milan, Italy (2019) Pereira, T., Silva, T., Mourelle, D.P.B., Guimarães, A., Sá, A.: A machine learning approach for wind power forecast. In: IEEE Milan PowerTech, pp. 1–6. Milan, Italy (2019)
29.
go back to reference Khosrow-Pour, M.: Excel as a professional tool: exploring the power of Excel. In: Encyclopedia of Information Science and Technology, pp. 4312-4321. 4th edn. IGI Global (2017) Khosrow-Pour, M.: Excel as a professional tool: exploring the power of Excel. In: Encyclopedia of Information Science and Technology, pp. 4312-4321. 4th edn. IGI Global (2017)
Metadata
Title
Forecasting Electricity Prices for the Feasibility of Renewable Energy Plants
Authors
Bucan Türkmen
Sena Kır
Nermin Ceren Türkmen
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_75

Premium Partners