Skip to main content
Top

2024 | OriginalPaper | Chapter

Forecasting GDP with Many Predictors Using Sparse-Group LASSO MIDAS

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We conducted an investigation into four econometric models designed to handle mixed-frequency data. Our primary objective is to leverage a vast array of monthly macroeconomic variables to enhance the accuracy of forecasting quarterly Gross Domestic Product (GDP). To achieve this, we compared the following models: (1) The Autoregressive (AR) model, (2) The Mixed Data Sampling (MIDAS) model, which enables the combination of data at different frequencies, (3) The Lasso-MIDAS model, as proposed by [27], aimed at addressing issues related to inconsistent data frequencies and the curse of dimensionality arising from high-dimensional data, (4) the Sparse-group LASSO model, introduced by [3], which accommodates for the mixing processes and recognizes that the financial and the macroeconomic data may have heavier than exponential tails. An empirical analysis of forecasting GDP growth reveals that the sparse-group LASSO model consistently outperforms other models when forecasting four steps ahead, both before and after COVID-19 episodes. For short-term forecasting, both the MIDAS and sparse-group LASSO models exhibit favorable performance compared to alternative approaches. When comparing our findings before and after the COVID-19 episodes, it becomes evident that the MIDAS model significantly outperforms other models when incorporating COVID-19 data. Utilizing high-frequency data without any form of regularization appears to play a substantial role in improving forecasting performance, particularly during abrupt economic downturns. In essence, these two models can serve as an alternative “benchmark” for forecasting when sudden economic fluctuations occur, rendering conventional models like the AR model quickly outdated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andreou, E., Ghysels, E., Kourtellos, A.: Regression models with mixed sampling frequencies. J. Econ. 158(2), 246–261 (2010). Specification Analysis in Honor of Phoebus J. Dhrymes Andreou, E., Ghysels, E., Kourtellos, A.: Regression models with mixed sampling frequencies. J. Econ. 158(2), 246–261 (2010). Specification Analysis in Honor of Phoebus J. Dhrymes
2.
go back to reference Andreou, E., Ghysels, E., Kourtellos, A.: Should macroeconomic forecasters use daily financial data and how? J. Bus. Econ. Stat. 31(2), 240–251 (2013)CrossRef Andreou, E., Ghysels, E., Kourtellos, A.: Should macroeconomic forecasters use daily financial data and how? J. Bus. Econ. Stat. 31(2), 240–251 (2013)CrossRef
3.
go back to reference Andrii Babii, E.G., Striaukas, J.: Machine learning time series regressions with an application to nowcasting. J. Bus. Econ. Stat. 40(3), 1094–1106 (2022)CrossRef Andrii Babii, E.G., Striaukas, J.: Machine learning time series regressions with an application to nowcasting. J. Bus. Econ. Stat. 40(3), 1094–1106 (2022)CrossRef
4.
go back to reference Armesto, M.T., Engemann, K., Owyang, M.: Forecasting with mixed frequencies. Review 92, 521–536 (2010) Armesto, M.T., Engemann, K., Owyang, M.: Forecasting with mixed frequencies. Review 92, 521–536 (2010)
5.
go back to reference Aruoba, S.B., Diebold, F.X., Scotti, C.: Real-time measurement of business conditions. J. Bus. Econ. Stat. 27(4), 417–427 (2009)CrossRef Aruoba, S.B., Diebold, F.X., Scotti, C.: Real-time measurement of business conditions. J. Bus. Econ. Stat. 27(4), 417–427 (2009)CrossRef
6.
go back to reference Bai, J., Ghysels, E., Wright, J.H.: State space models and MIDAS regressions. Economet. Rev. 32(7), 779–813 (2013)CrossRef Bai, J., Ghysels, E., Wright, J.H.: State space models and MIDAS regressions. Economet. Rev. 32(7), 779–813 (2013)CrossRef
7.
go back to reference Birchenhall, C., Osborn, D., Sensier, M.: Predicting UK business-cycle regimes. Scott. J. Polit. Econ. 48(2), 179–195 (2001) Birchenhall, C., Osborn, D., Sensier, M.: Predicting UK business-cycle regimes. Scott. J. Polit. Econ. 48(2), 179–195 (2001)
8.
go back to reference Birchenhall, C., Osborn, D., Simpson, P.: Predicting US business-cycle regimes. J. Bus. Econ. Stat. 17, 313–323 (1999)CrossRef Birchenhall, C., Osborn, D., Simpson, P.: Predicting US business-cycle regimes. J. Bus. Econ. Stat. 17, 313–323 (1999)CrossRef
9.
go back to reference Campbell, J.Y.: Asset prices, consumption, and the business cycle. Working paper 6485, National Bureau of Economic Research (1998) Campbell, J.Y.: Asset prices, consumption, and the business cycle. Working paper 6485, National Bureau of Economic Research (1998)
10.
go back to reference Clements, M.P., Galvãso, A.B.: Macroeconomic forecasting with mixed-frequency data: forecasting output growth in the United States. J. Bus. Econ. Stat. 26(4), 546–554 (2008)CrossRef Clements, M.P., Galvãso, A.B.: Macroeconomic forecasting with mixed-frequency data: forecasting output growth in the United States. J. Bus. Econ. Stat. 26(4), 546–554 (2008)CrossRef
11.
go back to reference Clements, M.P., Galvão, A.B.: Forecasting us output growth using leading indicators: an appraisal using MIDAS models. J. Appl. Economet. 24(7), 1187–1206 (2009)CrossRef Clements, M.P., Galvão, A.B.: Forecasting us output growth using leading indicators: an appraisal using MIDAS models. J. Appl. Economet. 24(7), 1187–1206 (2009)CrossRef
12.
go back to reference Doan, T., Litterman, R., Sims, C.: Forecasting and conditional projection using realistic prior distributions. Economet. Rev. 3(1), 1–100 (1984)CrossRef Doan, T., Litterman, R., Sims, C.: Forecasting and conditional projection using realistic prior distributions. Economet. Rev. 3(1), 1–100 (1984)CrossRef
13.
go back to reference Estrella, A., Mishkin, F.S.: Predicting US recessions: financial variables as leading indicators. Rev. Econ. Stat. 80, 45–61 (1995)CrossRef Estrella, A., Mishkin, F.S.: Predicting US recessions: financial variables as leading indicators. Rev. Econ. Stat. 80, 45–61 (1995)CrossRef
14.
go back to reference Forni, M., Hallin, M., Lippi, M., Reichlin, L.: Do financial variables help forecasting inflation and real activity in the euro area? J. Monet. Econ. 50(6), 1243–1255 (2003)CrossRef Forni, M., Hallin, M., Lippi, M., Reichlin, L.: Do financial variables help forecasting inflation and real activity in the euro area? J. Monet. Econ. 50(6), 1243–1255 (2003)CrossRef
15.
go back to reference Francis, N., Ghysels, E., Owyang, M.: The low-frequency impact of daily monetary policy shocks. Discussion Paper Federal Reserve Bank of St. Louis Working Paper Series 2011-009B (2011) Francis, N., Ghysels, E., Owyang, M.: The low-frequency impact of daily monetary policy shocks. Discussion Paper Federal Reserve Bank of St. Louis Working Paper Series 2011-009B (2011)
16.
go back to reference Ghysels, E.: On the periodic structure of the business cycles. J. Bus. Econ. Stat. 289–298 (1994) Ghysels, E.: On the periodic structure of the business cycles. J. Bus. Econ. Stat. 289–298 (1994)
17.
go back to reference Ghysels, E.: Macroeconomics and the reality of mixed frequency data. UNC Discussion Paper (2012) Ghysels, E.: Macroeconomics and the reality of mixed frequency data. UNC Discussion Paper (2012)
18.
go back to reference Ghysels, E.: Macroeconomics and the reality of mixed frequency data. J. Econ. 193(2), 294–314 (2016). The Econometric Analysis of Mixed Frequency Data Sampling Ghysels, E.: Macroeconomics and the reality of mixed frequency data. J. Econ. 193(2), 294–314 (2016). The Econometric Analysis of Mixed Frequency Data Sampling
19.
go back to reference Ghysels, E., Sinko, A., Valankov, R.: The MIDAS touch: mixed data sampling regression models. UNC Working Paper (2004) Ghysels, E., Sinko, A., Valankov, R.: The MIDAS touch: mixed data sampling regression models. UNC Working Paper (2004)
20.
go back to reference Ghysels, E., Sinko, A., Valankov, R.: MIDAS regressions: further results and new directions. Econ. Rev. 26(1) (2007) Ghysels, E., Sinko, A., Valankov, R.: MIDAS regressions: further results and new directions. Econ. Rev. 26(1) (2007)
21.
go back to reference Hamilton, J.: Time series analysis. Princeton University Press, Princeton (New Jersey) (1994) Hamilton, J.: Time series analysis. Princeton University Press, Princeton (New Jersey) (1994)
22.
go back to reference Harvey, C.R.: Forecasts of economic growth from the bond and stock markets. Financ. Anal. J. 45(5), 38–45 (1989)CrossRef Harvey, C.R.: Forecasts of economic growth from the bond and stock markets. Financ. Anal. J. 45(5), 38–45 (1989)CrossRef
23.
go back to reference Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTEXTS (2018) Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTEXTS (2018)
24.
go back to reference Kadiyala, K.R., Karlsson, S.: Numerical methods for estimation and inference in Bayesian VAR-models. J. Appl. Econ. 12(2), 99–132 (1997) Kadiyala, K.R., Karlsson, S.: Numerical methods for estimation and inference in Bayesian VAR-models. J. Appl. Econ. 12(2), 99–132 (1997)
25.
go back to reference Kuzin, V., Marcellino, M., Schumacher, C.: Midas versus mixed-frequency VAR: nowcasting GDP in the euro area. Int. J. Forecast. 27(2), 529–542 (2011) Kuzin, V., Marcellino, M., Schumacher, C.: Midas versus mixed-frequency VAR: nowcasting GDP in the euro area. Int. J. Forecast. 27(2), 529–542 (2011)
26.
go back to reference Litterman, R.B.: Forecasting with Bayesian vector auto regressions-five years of experience. J. Bus. Econ. Stat. 4(1), 25–38 (1986) Litterman, R.B.: Forecasting with Bayesian vector auto regressions-five years of experience. J. Bus. Econ. Stat. 4(1), 25–38 (1986)
27.
go back to reference Marsilli, C.: Variable selection in predictive MIDAS models. Working Papers 520, Banque de France (2014) Marsilli, C.: Variable selection in predictive MIDAS models. Working Papers 520, Banque de France (2014)
28.
go back to reference Mitchell, W.C., Burns, A.F.: Statistical Indicators of Cyclical Revivals. Princeton University Press, pp. 162–183 (1961) Mitchell, W.C., Burns, A.F.: Statistical Indicators of Cyclical Revivals. Princeton University Press, pp. 162–183 (1961)
29.
go back to reference Moore, G.H.: Business Cycle Indicators, vol. 1. Princeton University Press (1961) Moore, G.H.: Business Cycle Indicators, vol. 1. Princeton University Press (1961)
30.
31.
go back to reference Sims, C.A., Zha, T.: Bayesian methods for dynamic multivariate models. Int. Econ. Rev. 39(4), 949–968 (1998)CrossRef Sims, C.A., Zha, T.: Bayesian methods for dynamic multivariate models. Int. Econ. Rev. 39(4), 949–968 (1998)CrossRef
32.
go back to reference Stock, J.H., Watson, M.W.: New indexes of coincident and leading economic indicators. Working Paper 1380, National Bureau of Economic Research (1990) Stock, J.H., Watson, M.W.: New indexes of coincident and leading economic indicators. Working Paper 1380, National Bureau of Economic Research (1990)
33.
go back to reference Stock, J.H., Watson, M.W.: Business cycle fluctuations in US macroeconomic time series. Working Paper 6528, National Bureau of Economic Research (1998) Stock, J.H., Watson, M.W.: Business cycle fluctuations in US macroeconomic time series. Working Paper 6528, National Bureau of Economic Research (1998)
34.
go back to reference Stock, J.H., Watson, M.W.: Macroeconomic forecasting using diffusion indexes. J. Bus. Econ. Stat. 20(2), 147–162 (2002)CrossRef Stock, J.H., Watson, M.W.: Macroeconomic forecasting using diffusion indexes. J. Bus. Econ. Stat. 20(2), 147–162 (2002)CrossRef
35.
go back to reference Stock, J.H., Watson, M.W.: Combination forecasts of output growth in a seven-country data set. J. Forecast. 23(6), 405–430 (2004)CrossRef Stock, J.H., Watson, M.W.: Combination forecasts of output growth in a seven-country data set. J. Forecast. 23(6), 405–430 (2004)CrossRef
36.
go back to reference Stock, J.H., Watson, M.W.: Forecasting output and inflation: the role of asset prices. J. Econ. Lit. 41(3), 788–829 (2003) Stock, J.H., Watson, M.W.: Forecasting output and inflation: the role of asset prices. J. Econ. Lit. 41(3), 788–829 (2003)
37.
go back to reference Tay, A.S.: Mixing frequencies: stock returns as a predictor of real output growth. Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research (2006) Tay, A.S.: Mixing frequencies: stock returns as a predictor of real output growth. Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research (2006)
38.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Ser. B: Stat. Methodol. 73(3), 273–282 (2011) Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Ser. B: Stat. Methodol. 73(3), 273–282 (2011)
39.
go back to reference Uematsu, Y., Tanaka, S.: High-dimensional macroeconomic forecasting and variable selection via penalized regression. Econ. J. 22(1), 34–56 (2019) Uematsu, Y., Tanaka, S.: High-dimensional macroeconomic forecasting and variable selection via penalized regression. Econ. J. 22(1), 34–56 (2019)
Metadata
Title
Forecasting GDP with Many Predictors Using Sparse-Group LASSO MIDAS
Author
Wasin Siwasarit
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_10