Skip to main content
Top
Published in:

02-05-2021

Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models

Authors: Manoj Verma, Harish Kumar Ghritlahre

Published in: Annals of Data Science | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wind energy plays a major role in meeting the world’s growing power demand, due to which wind speed forecasting is essential for power system management, energy trading and maintaining the balance between consumption and generation for a stable electricity market. In this article, three different types of predicting techniques have been implemented for estimating wind speed by means of different meteorological parameters. Group method of data handling (GMDH), multi linear regression (MLR) and artificial neural network (ANN) models have been developed. For these models, data sets of 05 years (12 datasets from each year) were collected from the National Renewable Energy Laboratory (NREL). Five different types of input variables, which are ambient temperature (Ta), atmospheric pressure (Pr), wind direction (WD), relative humidity (RH) and precipitation (Pc) were selected as independent variables in all models. The collected wind speed (Wv) is selected as output or dependent variable. In this study, 48 sets of data were picked for training process and 12 datasets were selected for testing. The performances of models were examined using statistical parameters such as RMSE, MAPE and R2. MLR, GMDH and ANN techniques accurately performed with values of correlation coefficient (R) being obtained as 0.90552, 0.95542 and 0.97617 respectively. Comparative study of all models reveals that out of these three techniques, ANN performs the best. In the ANN model, the values of RMSE, MAE and R2 obtained were 0.17476, 0.12984 and 0.95210 respectively, which are optimal results when compared to those of other models. After ANN, GMDH performed better than MLR. Above analysis reveals that the wind speed was predicted with the highest accuracy by the neural technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Verma M, Ahmed S, Bhagoria JL (2015) A review: repowering of Indian wind farms. Int J Emerg Technol 6(1):12 Verma M, Ahmed S, Bhagoria JL (2015) A review: repowering of Indian wind farms. Int J Emerg Technol 6(1):12
5.
go back to reference Verma M, Ahmed S, Bhagoria JL (2015) Re-powering of wind farms: state of art. Int J Emerg Technol 6(2):112 Verma M, Ahmed S, Bhagoria JL (2015) Re-powering of wind farms: state of art. Int J Emerg Technol 6(2):112
14.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York, pp 2250–2254 Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York, pp 2250–2254
15.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer
20.
go back to reference Fonte PM, Silva GX, Quadrado JC (2005) Wind speed prediction using artificial neural networks. WSEAS Trans Syst 4(4):379–384 Fonte PM, Silva GX, Quadrado JC (2005) Wind speed prediction using artificial neural networks. WSEAS Trans Syst 4(4):379–384
30.
go back to reference Bin Ahmad, A. S., bin Hassan, M. Y., & bin Majid, M. S. (2012). Application of hybrid GMDH and Least Square Support Vector Machine in energy consumption forecasting. In: 2012 IEEE International Conference on Power and Energy (PECon) (pp. 139–144). IEEE. https://doi.org/10.1109/PECon.2012.6450193 Bin Ahmad, A. S., bin Hassan, M. Y., & bin Majid, M. S. (2012). Application of hybrid GMDH and Least Square Support Vector Machine in energy consumption forecasting. In: 2012 IEEE International Conference on Power and Energy (PECon) (pp. 139–144). IEEE. https://​doi.​org/​10.​1109/​PECon.​2012.​6450193
32.
go back to reference Shekhawat AS (2014) Wind power forecasting using artificial neural networks. Int J Eng Res Technol 3:993–998 Shekhawat AS (2014) Wind power forecasting using artificial neural networks. Int J Eng Res Technol 3:993–998
36.
go back to reference Kumar V, Singhal VK, Kushwaha A, Agarwal M, Gupta A (2017) Wind speed & power forecasting using artificial neural network (NARX) for new York wind energy farm. J Res 3(9):1–10 Kumar V, Singhal VK, Kushwaha A, Agarwal M, Gupta A (2017) Wind speed & power forecasting using artificial neural network (NARX) for new York wind energy farm. J Res 3(9):1–10
46.
go back to reference Haykin S, Lippmann R (1994) Neural networks, a comprehensive foundation. Int J Neural Syst 5(4):363–364CrossRef Haykin S, Lippmann R (1994) Neural networks, a comprehensive foundation. Int J Neural Syst 5(4):363–364CrossRef
47.
go back to reference Haykin S (2010) Neural networks and learning machines, 3/E. Pearson Education, India Haykin S (2010) Neural networks and learning machines, 3/E. Pearson Education, India
Metadata
Title
Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models
Authors
Manoj Verma
Harish Kumar Ghritlahre
Publication date
02-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 3/2023
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-021-00333-0

Premium Partner