Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

8. Forensic Reasoning upon Pre-Obtained Surveillance Metadata Using Uncertain Spatio-Temporal Rules and Subjective Logic

Authors : Seunghan Han, Bonjung Koo, Andreas Hutter, Walter Stechele

Published in: Analysis, Retrieval and Delivery of Multimedia Content

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents an approach to modeling uncertain contextual rules using subjective logic for forensic visual surveillance. Unlike traditional real-time visual surveillance, forensic analysis of visual surveillance data requires mating of high level contextual cues with observed evidential metadata where both the specification of the context and the metadata suffer from uncertainties. To address this aspect, there has been work on the use of declarative logic formalisms to represent and reason about contextual knowledge, and on the use of different uncertainty handling formalisms. In such approaches, uncertainty attachment to logical rules and facts are crucial. However, there are often cases that the truth value of rule itself is also uncertain thereby, uncertainty attachment to rule itself should be rather functional. The more X then the more Y type of knowledge is one of the examples. To enable such type of rule modeling, in this chapter, we propose a reputational subjective opinion function upon logic programming, which is similar to fuzzy membership function but can also take into account uncertainty of membership value itself. Then we further adopt subjective logic’s fusion operator to accumulate the acquired opinions over time. To verify our approach, we present a preliminary experimental case study on reasoning likelihood of being a good witness that uses metadata extracted by a person tracker and evaluates the relationship between the tracked persons. The case study is further extended to demonstrate more complex forensic reasoning by considering additional contextual rules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo
3.
go back to reference Denecker M, Kakas A (2002) Abduction in logic programming. In: Computational logic: logic programming and beyond. Lecture notes in artificial intelligence, vol 2407, pp 402–437. Springer, Berlin Denecker M, Kakas A (2002) Abduction in logic programming. In: Computational logic: logic programming and beyond. Lecture notes in artificial intelligence, vol 2407, pp 402–437. Springer, Berlin
4.
go back to reference Han S, Hutter A, Stechele W (2009) Toward contextual forensic retrieval for visual surveillance: challenges and an architectural approach. In: 10th international workshop on image analysis for multimedia interactive services (WIAMIS’09), London, 6–8 May 2009 Han S, Hutter A, Stechele W (2009) Toward contextual forensic retrieval for visual surveillance: challenges and an architectural approach. In: 10th international workshop on image analysis for multimedia interactive services (WIAMIS’09), London, 6–8 May 2009
5.
go back to reference Han S, Koo B, Hutter A, Shet V, Stechele W (2010) Subjective logic based hybrid approach to conditional evidence fusion for forensic visual surveillance. In: 7th IEEE international conference on advanced video and signal based surveillance (AVSS’10), Boston, 29 Aug–1 Sept 2010 Han S, Koo B, Hutter A, Shet V, Stechele W (2010) Subjective logic based hybrid approach to conditional evidence fusion for forensic visual surveillance. In: 7th IEEE international conference on advanced video and signal based surveillance (AVSS’10), Boston, 29 Aug–1 Sept 2010
6.
go back to reference Han S, Koo B, Stechele W (2010) Subjective logic based approach to modeling default reasoning for visual surveillance. In: 4th IEEE international conference on semantic computing (ICSC’10), Pittsburgh, 22–24 Sept 2010 Han S, Koo B, Stechele W (2010) Subjective logic based approach to modeling default reasoning for visual surveillance. In: 4th IEEE international conference on semantic computing (ICSC’10), Pittsburgh, 22–24 Sept 2010
7.
go back to reference Jøsang A (2001) A logic for uncertain probabilities. Int J Uncertain Fuzz Knowl-Based Syst 9:279–311 Jøsang A (2001) A logic for uncertain probabilities. Int J Uncertain Fuzz Knowl-Based Syst 9:279–311
8.
go back to reference Bremond F, Thonnat M (1996) A context representation for surveillance systems. In: ECCV worshop on conceptual descriptions from images, Cambridge, Apr 1996 Bremond F, Thonnat M (1996) A context representation for surveillance systems. In: ECCV worshop on conceptual descriptions from images, Cambridge, Apr 1996
9.
go back to reference Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition from video. In: ACM conference on multimedia (ACM-MM’08), Oct 2008 Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition from video. In: ACM conference on multimedia (ACM-MM’08), Oct 2008
10.
go back to reference Jianbing M, Weiru L, Paul M, Weiqi Y (2009) Event composition with imperfect information for bus surveillance. In: 6th IEEE international conference on advanced video and signal based surveillance (AVSS’09), Genoa, 2–4 Sept 2009 Jianbing M, Weiru L, Paul M, Weiqi Y (2009) Event composition with imperfect information for bus surveillance. In: 6th IEEE international conference on advanced video and signal based surveillance (AVSS’09), Genoa, 2–4 Sept 2009
11.
go back to reference Shet V, Harwood D, Davis L (2005) VidMAP: video monitoring of activity with prolog. In: 2nd IEEE international conference on advanced video and signal based surveillance (AVSS’05), Como, 15–16 Sept 2005 Shet V, Harwood D, Davis L (2005) VidMAP: video monitoring of activity with prolog. In: 2nd IEEE international conference on advanced video and signal based surveillance (AVSS’05), Como, 15–16 Sept 2005
12.
go back to reference Shet V, Neumann J, Ramesh V, Davis L (2007) Bilattice-based logical reasoning for human detection. In: IEEE international conference on computer vision and pattern recognition (CVPR’07), Minneapolis, 18–23 June 2007 Shet V, Neumann J, Ramesh V, Davis L (2007) Bilattice-based logical reasoning for human detection. In: IEEE international conference on computer vision and pattern recognition (CVPR’07), Minneapolis, 18–23 June 2007
13.
go back to reference Anderson D, Luke RH, Keller JM, Skubic M (2007) Modeling human activity from voxel person using fuzzy logic. IEEE Trans Fuzzy Syst 17(1):39–49 Anderson D, Luke RH, Keller JM, Skubic M (2007) Modeling human activity from voxel person using fuzzy logic. IEEE Trans Fuzzy Syst 17(1):39–49
14.
go back to reference Hongeng S, Nevatia R, Bremond F (2004) Video-based event recognition: activity representation and probabilistic recognition methods. Comput Vis Image Understand 96(2):129–162CrossRef Hongeng S, Nevatia R, Bremond F (2004) Video-based event recognition: activity representation and probabilistic recognition methods. Comput Vis Image Understand 96(2):129–162CrossRef
15.
go back to reference Feryhough J, Cohn AG, Hogg DC (1998) Building qualitative event models automatically from visual input. In: 6th IEEE international conference on computer vision (ICCV’98), pp 350–355 Feryhough J, Cohn AG, Hogg DC (1998) Building qualitative event models automatically from visual input. In: 6th IEEE international conference on computer vision (ICCV’98), pp 350–355
16.
go back to reference Makris D, Ellis T (2002) Spatial and probabilistic modelling of pedestrian behaviour. In: 13th British machine vision conference (BMVC’02), Cardiff, 2–5 Sept 2002 Makris D, Ellis T (2002) Spatial and probabilistic modelling of pedestrian behaviour. In: 13th British machine vision conference (BMVC’02), Cardiff, 2–5 Sept 2002
17.
go back to reference Cupillard F, Bremond F, Thonnat M (2003) Behavior recognition for individuals, groups of people, and crowd. In: IEEE seminar intelligent distributed surveillance systems, London, Mar 2003 Cupillard F, Bremond F, Thonnat M (2003) Behavior recognition for individuals, groups of people, and crowd. In: IEEE seminar intelligent distributed surveillance systems, London, Mar 2003
18.
go back to reference Makris D, Ellis T (2005) Learning semantic scene models from observing activity in visual surveillance. IEEE Trans Syst Man Cybernet Part B 35(3):397–408 Makris D, Ellis T (2005) Learning semantic scene models from observing activity in visual surveillance. IEEE Trans Syst Man Cybernet Part B 35(3):397–408
19.
go back to reference Ginsberg ML (1988) Multivalued logics: a uniform approach to inference in artificial intelligence. Comput Intell 4(3):256–316 Ginsberg ML (1988) Multivalued logics: a uniform approach to inference in artificial intelligence. Comput Intell 4(3):256–316
20.
go back to reference Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
21.
go back to reference Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybernet (SMC)(3):28–44 Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybernet (SMC)(3):28–44
22.
go back to reference Jøsang A (1997) Artificial reasoning with subjective logic. In: 2nd Australian workshop on commonsense reasoning, Perth Jøsang A (1997) Artificial reasoning with subjective logic. In: 2nd Australian workshop on commonsense reasoning, Perth
23.
go back to reference NASA (1993) Basic programming guide. NASA JSC-25012 NASA (1993) Basic programming guide. NASA JSC-25012
25.
go back to reference Gottwald S, Hajek P (2005) Triangular norm based mathematical fuzzy logic. In: Klement EP, Mesiar R (eds) Logical, algebraic, analytic and probabilistic aspects of triangular norms, pp 275–300. Elsevier, Amsterdam Gottwald S, Hajek P (2005) Triangular norm based mathematical fuzzy logic. In: Klement EP, Mesiar R (eds) Logical, algebraic, analytic and probabilistic aspects of triangular norms, pp 275–300. Elsevier, Amsterdam
26.
go back to reference Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779 Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779
27.
go back to reference Jøsang A, Marsh S, Pope S (2006) Exploring different types of trust propagation. In: 4th international conference on trust management Jøsang A, Marsh S, Pope S (2006) Exploring different types of trust propagation. In: 4th international conference on trust management
29.
go back to reference Jøsang A, McAnally D (2004) Multiplication and comultiplication of beliefs. Int J Approx Reason 142:19–51 Jøsang A, McAnally D (2004) Multiplication and comultiplication of beliefs. Int J Approx Reason 142:19–51
30.
go back to reference Jøsang A (2006) The consensus operator for combining beliefs. Artif Intell J 38(1):157–170 Jøsang A (2006) The consensus operator for combining beliefs. Artif Intell J 38(1):157–170
31.
go back to reference Hakeem A, Shah M (2004) Ontology and taxonomy collaborated framework for meeting classification. In: 17th international conference on pattern recognition (ICPR’04), Washington Hakeem A, Shah M (2004) Ontology and taxonomy collaborated framework for meeting classification. In: 17th international conference on pattern recognition (ICPR’04), Washington
32.
go back to reference Jøsang A (2008) Conditional reasoning with subjective logic. J Multiple Valued Logic Soft Comput 15(1):5–38 Jøsang A (2008) Conditional reasoning with subjective logic. J Multiple Valued Logic Soft Comput 15(1):5–38
Metadata
Title
Forensic Reasoning upon Pre-Obtained Surveillance Metadata Using Uncertain Spatio-Temporal Rules and Subjective Logic
Authors
Seunghan Han
Bonjung Koo
Andreas Hutter
Walter Stechele
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3831-1_8