Skip to main content
Top
Published in: Environmental Earth Sciences 4/2015

01-02-2015 | Original Article

Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran

Authors: Zohre Sadat Pourtaghi, Hamid Reza Pourghasemi, Mauro Rossi

Published in: Environmental Earth Sciences | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Forests are important natural resources having the role of supporting economic activity which plays a significant role in regulating the climate and the carbon cycle. Forest ecosystems are increasingly threatened by fires which caused by a range of natural and anthropogenic factors. Hence, spatial assessment of fire risk is very important to reduce the impacts of wild land fires. In current research, evaluation of forest fire susceptibility is performed using remote sensing and geographic information system data of Minudasht forests, Golestan province, Iran. Factors affecting the fire occurrence, such as normalized difference vegetation index (NDVI) and land use were extracted from classified Landsat-7 ETM+ imagery. Slope degree, slope aspect, topographic wetness index, topographic position index, and plan curvature were computed using topographical database. Other factors affecting on the forest fires are distance to roads, distance to rivers, distance to villages, soil texture, wind effect, annual temperature, and annual rain. To delineate forest fire susceptibility mapping in the study area, the Shannon’s entropy (SE) and frequency ratio (FR) models has been applied. Forest fire locations were specified in the study area from MODIS data and extensive field surveys. 106 (≈70 %) locations, out of 151 forest fire identified, were used for the forest fire susceptibility maps, while the remaining 45 (≈30 %) cases were used for the model validation. The findings revealed that the most important conditioning factors were the NDVI, land use, soil and annual temperature. Therefore, preventive measures need to be applied in the ecological conditions. Ultimately, the receiver operating characteristic curve for forest fire susceptibility maps was depicted and the area under the curve was computed. The validation results showed that the area under the curve for SE and FR is equal of 83.16 and 79.85 % with standard errors of 0.044 and 0.047, respectively. The mentioned results can be applied to early warning, fire suppression resources planning and allocation works.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adab H, Kanniah K, Soleimani K (2011) GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. International Conference on Environmental and Computer Science. Vol. 19, IACSIT Press, Singapore Adab H, Kanniah K, Soleimani K (2011) GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. International Conference on Environmental and Computer Science. Vol. 19, IACSIT Press, Singapore
go back to reference Adab H, Devi Kanniah K, Solaimani K (2013) Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65:1723–1743CrossRef Adab H, Devi Kanniah K, Solaimani K (2013) Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65:1723–1743CrossRef
go back to reference Aleemahmoodi Sarab S, Feghhi J, Goshtasb H (2013) Determining the main parameters affecting on forest fire using MLP neural network (forests of western Iran: Izeh). Int J Mol Evol Biodivers 3(4):15–23 Aleemahmoodi Sarab S, Feghhi J, Goshtasb H (2013) Determining the main parameters affecting on forest fire using MLP neural network (forests of western Iran: Izeh). Int J Mol Evol Biodivers 3(4):15–23
go back to reference Alexander DE (1995) A survey of the field of natural hazards and disaster studies. In Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic, Dordrecht, pp 1–19CrossRef Alexander DE (1995) A survey of the field of natural hazards and disaster studies. In Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic, Dordrecht, pp 1–19CrossRef
go back to reference Alexandrian D, Esnault F (1998) Public policies affecting forest fires in the Mediterranean Basin. FAO Forestry, Rome  Alexandrian D, Esnault F (1998) Public policies affecting forest fires in the Mediterranean Basin. FAO Forestry, Rome
go back to reference Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-122, Ogden, UT, p. 22 Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-122, Ogden, UT, p. 22
go back to reference Antoninetti M, Binagli E, Rampini A, D’Angelo M (1993) The integrated use of satellite and topographic data for forest fire hazard map. In: Winkler P, Balkema AA, Rotterdam B (eds) Remote sensing for monitoring the changing environment of Europe, pp 179–184 Antoninetti M, Binagli E, Rampini A, D’Angelo M (1993) The integrated use of satellite and topographic data for forest fire hazard map. In: Winkler P, Balkema AA, Rotterdam B (eds) Remote sensing for monitoring the changing environment of Europe, pp 179–184
go back to reference Ardakani A, Valadanzooj MJ, Mansourian A (2010) Spatial analysis of fire potential in Iran using RS and GIS. J Environ Stud 35 (52):7–9 Ardakani A, Valadanzooj MJ, Mansourian A (2010) Spatial analysis of fire potential in Iran using RS and GIS. J Environ Stud 35 (52):7–9
go back to reference Artsybashev ES (1983) Forest fires and their control. Oxonian New Delhi (lst ed. in Russian, 1974) Artsybashev ES (1983) Forest fires and their control. Oxonian New Delhi (lst ed. in Russian, 1974)
go back to reference Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology 65(1–2):15–31CrossRef Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology 65(1–2):15–31CrossRef
go back to reference Banj Shafiei A, Akbarinia M, Jalali G, Hosseini H (2010) Forest fire effects in beech dominated mountain forest of Iran. Forest Ecol Manag 259:2191–2196CrossRef Banj Shafiei A, Akbarinia M, Jalali G, Hosseini H (2010) Forest fire effects in beech dominated mountain forest of Iran. Forest Ecol Manag 259:2191–2196CrossRef
go back to reference Bednarik M, Magulová B, Matys M, Marschalko M (2010) Landslide susceptibility assessment of the Kraľovany-Liptovský Mikuláš railway case study. Phys Chem Earth, Parts A/B/C 35(3):162–171CrossRef Bednarik M, Magulová B, Matys M, Marschalko M (2010) Landslide susceptibility assessment of the Kraľovany-Liptovský Mikuláš railway case study. Phys Chem Earth, Parts A/B/C 35(3):162–171CrossRef
go back to reference Bednarik M, Yilmaz I, Marschalko M (2012) Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia. Nat Hazards 64(1):547–575CrossRef Bednarik M, Yilmaz I, Marschalko M (2012) Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia. Nat Hazards 64(1):547–575CrossRef
go back to reference Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, Ottawa Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, Ottawa
go back to reference Braun WJ, Jones BL, Lee JSW, Woolford DG, Wotton BM (2010) Forest fire risk assessment: an illustrative example from Ontario, Canada. J Probab Stat. doi:10.1155/2010/823018 Braun WJ, Jones BL, Lee JSW, Woolford DG, Wotton BM (2010) Forest fire risk assessment: an illustrative example from Ontario, Canada. J Probab Stat. doi:10.​1155/​2010/​823018
go back to reference Brown AA, Davis KP (1973) Forest fire: control and use. McGraw-Hill, New York Brown AA, Davis KP (1973) Forest fire: control and use. McGraw-Hill, New York
go back to reference Burgan RE (1988) 1988 revisons to the 1978 national fire-danger rating system. Research paper SE-273. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. Burgan RE (1988) 1988 revisons to the 1978 national fire-danger rating system. Research paper SE-273. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.
go back to reference Castro R, Chuvieco E (1998) Modeling forest fire danger from geographic information systems. GI 13:15–23 Castro R, Chuvieco E (1998) Modeling forest fire danger from geographic information systems. GI 13:15–23
go back to reference Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. Wiley, New York, p 366CrossRef Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. Wiley, New York, p 366CrossRef
go back to reference Chuvieco E (2003) Wildland fire danger estimation and mapping: the role of remote sensing data. Series in Remote Sensing. World Scientific, Singapore Chuvieco E (2003) Wildland fire danger estimation and mapping: the role of remote sensing data. Series in Remote Sensing. World Scientific, Singapore
go back to reference Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159CrossRef Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159CrossRef
go back to reference Chuvieco E, Sales J (1996) Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Syst 10:333–345CrossRef Chuvieco E, Sales J (1996) Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Syst 10:333–345CrossRef
go back to reference Chuvieco E, Martinez Vega J, Page AL (1989) Multi temporal analysis of TM images: application to forest fire mapping and inventory in a Mediterranean environment. ESA, European Coordinated Effort for Monitoring the Earth’s Environment. A Pilot Project Campaign on Landsat Thematic Mapper Applications (1985–1987) pp 279–285 (SEE N 89-28055 22-43) Chuvieco E, Martinez Vega J, Page AL (1989) Multi temporal analysis of TM images: application to forest fire mapping and inventory in a Mediterranean environment. ESA, European Coordinated Effort for Monitoring the Earth’s Environment. A Pilot Project Campaign on Landsat Thematic Mapper Applications (1985–1987) pp 279–285 (SEE N 89-28055 22-43)
go back to reference Chuvieco E, Coceroa D, Riano D, Martinc P, Martıiez-Vega J, Dela Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331CrossRef Chuvieco E, Coceroa D, Riano D, Martinc P, Martıiez-Vega J, Dela Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331CrossRef
go back to reference Chuvieco E, Aguadoa I, Yebraa M (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58CrossRef Chuvieco E, Aguadoa I, Yebraa M (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58CrossRef
go back to reference Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406CrossRef Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406CrossRef
go back to reference DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York
go back to reference Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165CrossRef Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165CrossRef
go back to reference Dong CE (2006) Seasonal variation in moisture content of Eastern Canadian Tree foliage and the possible effect on crown fires. Departmental Publication number 1204, Forestry Branch, Canada 227–229 Dong CE (2006) Seasonal variation in moisture content of Eastern Canadian Tree foliage and the possible effect on crown fires. Departmental Publication number 1204, Forestry Branch, Canada 227–229
go back to reference Egan JP (1975) Signal detection theory and ROC analysis. NY Acad 195:266–268 Egan JP (1975) Signal detection theory and ROC analysis. NY Acad 195:266–268
go back to reference Erten E, Kurgun V, Musaoglu N (2004) Forest fire risk zone mapping from satellite imagery and GIS: A case study. XXth Congress of the International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, 222–230 Erten E, Kurgun V, Musaoglu N (2004) Forest fire risk zone mapping from satellite imagery and GIS: A case study. XXth Congress of the International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, 222–230
go back to reference García M, Chuvieco E, Nieto H, Aguado I (2008) Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens Environ 112:3618–3627CrossRef García M, Chuvieco E, Nieto H, Aguado I (2008) Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens Environ 112:3618–3627CrossRef
go back to reference Giglioa L, Descloitresa J, Justicec ChO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRef Giglioa L, Descloitresa J, Justicec ChO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRef
go back to reference Ghomi Motazeh A, Farahi Ashtiani E, Baniasadi R, Masoumpoor Choobar F (2013) Rating and mapping mire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. For Ideas 19(2(46)): 141–150 Ghomi Motazeh A, Farahi Ashtiani E, Baniasadi R, Masoumpoor Choobar F (2013) Rating and mapping mire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. For Ideas 19(2(46)): 141–150
go back to reference Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27CrossRef Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27CrossRef
go back to reference Iwan S, Mahmud AR, Mansor S, Shariff ARM, Nuruddin AA (2004) GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prev Manage 13(5):379–386CrossRef Iwan S, Mahmud AR, Mansor S, Shariff ARM, Nuruddin AA (2004) GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prev Manage 13(5):379–386CrossRef
go back to reference Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11(4):909–926CrossRef Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11(4):909–926CrossRef
go back to reference Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4:1–10CrossRef Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4:1–10CrossRef
go back to reference Jamshidi Bakhtar A, Sagheb-Talebi Kh, Marvi Mohajer MR, Haidari M (2013) The impact of fire on the forest and plants diversity in Iranian Oak forest. Int J Adv Biol Biomed Res 1(3):273–284 Jamshidi Bakhtar A, Sagheb-Talebi Kh, Marvi Mohajer MR, Haidari M (2013) The impact of fire on the forest and plants diversity in Iranian Oak forest. Int J Adv Biol Biomed Res 1(3):273–284
go back to reference Janbaz Ghobadi Gh, Gholizadeh B, Majidi Dashliburun O (2012) Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). Int J Agri Crop Sci 4(12):818–824 Janbaz Ghobadi Gh, Gholizadeh B, Majidi Dashliburun O (2012) Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). Int J Agri Crop Sci 4(12):818–824
go back to reference Jenness JS (2000) The Effects of fire on Mexican spotted Owls in Arizona and New Mexico. MSc thesis. Northern Arizona University, p137 Jenness JS (2000) The Effects of fire on Mexican spotted Owls in Arizona and New Mexico. MSc thesis. Northern Arizona University, p137
go back to reference Krasnow K, Schoennagel T, Veblen TT (2009) Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. Forest Ecol Manage 257:1603–1612CrossRef Krasnow K, Schoennagel T, Veblen TT (2009) Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. Forest Ecol Manage 257:1603–1612CrossRef
go back to reference Krivtsov V, Vigy O, Legg C, Curt T, Rigolot E, Lecomte I, Jappiot M, Lampin-Maillet C, Fernandes P, Pezzatti GB (2009) Fuel modeling in terrestrial ecosystems: an overview in the context of the development of an object-orientated database for wild fire analysis. Ecol Model 220(21):2915–2926. doi:10.1016/j.ecolmodel.2009.08.019 CrossRef Krivtsov V, Vigy O, Legg C, Curt T, Rigolot E, Lecomte I, Jappiot M, Lampin-Maillet C, Fernandes P, Pezzatti GB (2009) Fuel modeling in terrestrial ecosystems: an overview in the context of the development of an object-orientated database for wild fire analysis. Ecol Model 220(21):2915–2926. doi:10.​1016/​j.​ecolmodel.​2009.​08.​019 CrossRef
go back to reference Mandallaz D, Ye R (2011) Prediction of forest fires with Poisson models. Can J Forest Res 27(10):1685–1694CrossRef Mandallaz D, Ye R (2011) Prediction of forest fires with Poisson models. Can J Forest Res 27(10):1685–1694CrossRef
go back to reference Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236CrossRef Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236CrossRef
go back to reference Moore ID, Grayson RB, Ladson A (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30CrossRef Moore ID, Grayson RB, Ladson A (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30CrossRef
go back to reference Movaghati S, Samadzadegan F, Azizi A (2008) A comparative study of three algorithms for forest fire detection in Iran. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B8. Beijing Movaghati S, Samadzadegan F, Azizi A (2008) A comparative study of three algorithms for forest fire detection in Iran. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B8. Beijing
go back to reference Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison–Wesley/Pearson Education, Harlow England 394 Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison–Wesley/Pearson Education, Harlow England 394
go back to reference Noonan EK (2003) A coupled model approach for assessing fire hazard at point Reyes national seashore: Flam Map and GIS. In: Second international wild land fire ecology and fire management congress and fifth symposium on fire and forest meteorology, Orlando, FL. American Meteorological Society, 127–128 Noonan EK (2003) A coupled model approach for assessing fire hazard at point Reyes national seashore: Flam Map and GIS. In: Second international wild land fire ecology and fire management congress and fifth symposium on fire and forest meteorology, Orlando, FL. American Meteorological Society, 127–128
go back to reference O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690CrossRef O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690CrossRef
go back to reference Oh HJ, Lee S, Soedradjat G (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60:1317–1328CrossRef Oh HJ, Lee S, Soedradjat G (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60:1317–1328CrossRef
go back to reference Oh HJ, Kim YS, Choi JK, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172CrossRef Oh HJ, Kim YS, Choi JK, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172CrossRef
go back to reference Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197CrossRef Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197CrossRef
go back to reference Özkana C, Sunarb F, Berberoğluc S, Dönmezc C (2008) Effectiveness of boosting algorithms in forest fire classification. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B7. Beijing Özkana C, Sunarb F, Berberoğluc S, Dönmezc C (2008) Effectiveness of boosting algorithms in forest fire classification. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B7. Beijing
go back to reference Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84CrossRef Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84CrossRef
go back to reference Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon’s entropy and GIS. Appl Mech Mater 225:486–491CrossRef Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon’s entropy and GIS. Appl Mech Mater 225:486–491CrossRef
go back to reference Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2012c) Application of weights-of evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. doi:10.1007/s12517-012-0532-7 Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2012c) Application of weights-of evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. doi:10.​1007/​s12517-012-0532-7
go back to reference Pourghasemi HR, Pradhan B, Gokceoglu C (2012d) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat hazards 63(2):965–996CrossRef Pourghasemi HR, Pradhan B, Gokceoglu C (2012d) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat hazards 63(2):965–996CrossRef
go back to reference Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B (2013a) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi criteria evaluation models (North of Tehran, Iran). Arab J Geosci. doi:10.1007/s12517-012-0825-x Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B (2013a) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi criteria evaluation models (North of Tehran, Iran). Arab J Geosci. doi:10.​1007/​s12517-012-0825-x
go back to reference Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013b) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69(1):749–779CrossRef Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013b) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69(1):749–779CrossRef
go back to reference Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662. doi:10.1007/s10040-013-1089-6 CrossRef Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662. doi:10.​1007/​s10040-013-1089-6 CrossRef
go back to reference Pradhan B, Suliman MDHB, Awang MAB (2007) Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prev Manage 16(3):344–352CrossRef Pradhan B, Suliman MDHB, Awang MAB (2007) Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prev Manage 16(3):344–352CrossRef
go back to reference Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054CrossRef Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054CrossRef
go back to reference Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759CrossRef Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759CrossRef
go back to reference Prasad VK, Badarinath KVS, Anuradha E (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J Environ Manage 86:1–13CrossRef Prasad VK, Badarinath KVS, Anuradha E (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J Environ Manage 86:1–13CrossRef
go back to reference Prosper-Laget V, Douguedroitl A, Guinot JP (1995) Mapping the risk of forest fire occurrence using NOAA satellite information. EAR seL Adv Remote Sens 4(3-Xll):30–38 Prosper-Laget V, Douguedroitl A, Guinot JP (1995) Mapping the risk of forest fire occurrence using NOAA satellite information. EAR seL Adv Remote Sens 4(3-Xll):30–38
go back to reference Preisler HK, Brillinger DR, Burgan RE, Benoit JW (2006) Probability based models for estimation of wildfire risk. Int J Wildland Fire 13:133–142CrossRef Preisler HK, Brillinger DR, Burgan RE, Benoit JW (2006) Probability based models for estimation of wildfire risk. Int J Wildland Fire 13:133–142CrossRef
go back to reference Rawat GS (2003) Fire Risk Assessment for forest fire control management in Chilla forest range of Rajaji National Park Uttaranchal (India). MSc Thesis. International Institute for Geo-information Science and Earth Observation Enschede of the Netherlands. p 74 Rawat GS (2003) Fire Risk Assessment for forest fire control management in Chilla forest range of Rajaji National Park Uttaranchal (India). MSc Thesis. International Institute for Geo-information Science and Earth Observation Enschede of the Netherlands. p 74
go back to reference Razali SBM (2007) Forest fire hazard rating assessment in peat swamp forest using integrated remote sensing and geographical information system. MSc thesis. University Putra Malaysia. p 52 Razali SBM (2007) Forest fire hazard rating assessment in peat swamp forest using integrated remote sensing and geographical information system. MSc thesis. University Putra Malaysia. p 52
go back to reference Renard Q, Pelissier R, Ramesh BR, Kodandapani N (2012) Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int J Wild land Fire. doi:10.1071/WF10109, p 15 Renard Q, Pelissier R, Ramesh BR, Kodandapani N (2012) Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int J Wild land Fire. doi:10.​1071/​WF10109, p 15
go back to reference Rouse JW Jr, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC type 3 final report green belt. pp 371 Rouse JW Jr, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC type 3 final report green belt. pp 371
go back to reference Saklani P (2008) Forest fire risk zonation, a case study Pauri Garhwal, Uttarakhand, India. MSc Thesis. International Institute for Geo-information Science and Earth Observation Enschede of the Netherlands and Indian Institute of Remote Sensing (NRSA) Dehradun India. p 71 Saklani P (2008) Forest fire risk zonation, a case study Pauri Garhwal, Uttarakhand, India. MSc Thesis. International Institute for Geo-information Science and Earth Observation Enschede of the Netherlands and Indian Institute of Remote Sensing (NRSA) Dehradun India. p 71
go back to reference Shadman Roodposhti M, Rahimi S, Jafar Beglou M (2012) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Nat Hazards. doi:10.1007/s11069-012-0523-8 Shadman Roodposhti M, Rahimi S, Jafar Beglou M (2012) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Nat Hazards. doi:10.​1007/​s11069-012-0523-8
go back to reference Singh VS (1997) The use of entropy in hydrology and water resource. Hydrol Process 11:587–626CrossRef Singh VS (1997) The use of entropy in hydrology and water resource. Hydrol Process 11:587–626CrossRef
go back to reference Stojanova D, Panov P, Kobler A, Džeroski S, Taškova K (2006) Learning to Predict Forest Fires with Different Data Mining Techniques. In: Proceedings of the 9th International multi conference Information Society IS 2006, 9–3th October 2006, Jožef Stefan Institute, Ljubljana Stojanova D, Panov P, Kobler A, Džeroski S, Taškova K (2006) Learning to Predict Forest Fires with Different Data Mining Techniques. In: Proceedings of the 9th International multi conference Information Society IS 2006, 9–3th October 2006, Jožef Stefan Institute, Ljubljana
go back to reference Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRef Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRef
go back to reference Turner AK, Schuster RL (eds) (1996) Landslides: Investigation and mitigation. Special Report 247 Transportation Research Board and National Research Council. National Academy Press, Washington DC, p 673 Turner AK, Schuster RL (eds) (1996) Landslides: Investigation and mitigation. Special Report 247 Transportation Research Board and National Research Council. National Academy Press, Washington DC, p 673
go back to reference Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Serv Ottawa Ontario Forest Tech Rep.35 Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Serv Ottawa Ontario Forest Tech Rep.35
go back to reference Vasconcelos MJP, Pereira JMC, Zeigler BP (1995) Simulation of fire growth using discrete event hierarchical modular models. EARSeL Adv Remote Sens 4(3):54–62 Vasconcelos MJP, Pereira JMC, Zeigler BP (1995) Simulation of fire growth using discrete event hierarchical modular models. EARSeL Adv Remote Sens 4(3):54–62
go back to reference Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos I (2009) Identifying wild land fire ignition factors through sensitivity analysis of a neural network. Nat Hazards 50(1):125–143CrossRef Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos I (2009) Identifying wild land fire ignition factors through sensitivity analysis of a neural network. Nat Hazards 50(1):125–143CrossRef
go back to reference Weise DR, Biging GS (1997) A qualitative comparison of fire spread models incorporating wind and slope effects. Forest Sci 43(2):170–180 Weise DR, Biging GS (1997) A qualitative comparison of fire spread models incorporating wind and slope effects. Forest Sci 43(2):170–180
go back to reference Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge
go back to reference Wulder MA, Franklin SE (2006) Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches. CRC Press, Boca Raton 246CrossRef Wulder MA, Franklin SE (2006) Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches. CRC Press, Boca Raton 246CrossRef
go back to reference Xiangwei G, Xianyun F, Hongquan X (2011) Forest fire risk zone evaluation based on high spatial resolution RS image in Liangyungang Huaguo Mountain Scenic Spot. In: IEEE International conference on spatial data mining and geographical knowledge services (ICSDM), 2011, June 29 2011–July 1 2011. pp 593–596 Xiangwei G, Xianyun F, Hongquan X (2011) Forest fire risk zone evaluation based on high spatial resolution RS image in Liangyungang Huaguo Mountain Scenic Spot. In: IEEE International conference on spatial data mining and geographical knowledge services (ICSDM), 2011, June 29 2011–July 1 2011. pp 593–596
go back to reference Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey, Ph.D Thesis. Department of Geomatics the University of Melbourne, pp 423 Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey, Ph.D Thesis. Department of Geomatics the University of Melbourne, pp 423
go back to reference Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat -Turkey). Comput Geosci 35:1125–1138CrossRef Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat -Turkey). Comput Geosci 35:1125–1138CrossRef
go back to reference Yufeng S, Fengxiang J (2009) Landslide stability analysis based on generalized information entropy. ESIAT (2):83–85 Yufeng S, Fengxiang J (2009) Landslide stability analysis based on generalized information entropy. ESIAT (2):83–85
go back to reference Zhu L, Huang J (2006) GIS-based logistic regression method for landslide susceptibility mapping in regional scale. J Zhejiang Univ Sci A 7:2007–2017CrossRef Zhu L, Huang J (2006) GIS-based logistic regression method for landslide susceptibility mapping in regional scale. J Zhejiang Univ Sci A 7:2007–2017CrossRef
Metadata
Title
Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran
Authors
Zohre Sadat Pourtaghi
Hamid Reza Pourghasemi
Mauro Rossi
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 4/2015
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-014-3502-4

Other articles of this Issue 4/2015

Environmental Earth Sciences 4/2015 Go to the issue