Skip to main content
Top

05-07-2024

Formal Verification of a Dependable State Machine-Based Hardware Architecture for Safety-Critical Cyber-Physical Systems: Analysis, Design, and Implementation

Author: Shawkat Sabah Khairullah

Published in: Journal of Electronic Testing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the increasing interest in embedding digital devices in safety-critical cyber-physical systems (CPSs), such as industrial automation, aerospace, and automotive industries, attention has been directed toward proposing verifiable and reliable architectures. Prominent levels of formal verification and fault-tolerance are a requirement in dependable CPS systems to ensure system design meet the specifications and verify safety properties. In this paper, a novel formal verifiable and fault-tolerant hardware architecture uses the concepts of state machine, verification, and fault-tolerance as a foundation is developed. It is divided into four models: analysis model includes the functional requirements defined by the user, design model, the finite state machine is utilized to model the systems behavior which is tested by the NuSMV checker tool, implementation model simulates test cases on waveforms to validate the design against the requirements and verification model verifies functional and critical properties using mathematical formal linear time and computation tree logic to prove compliance with requirements and detect errors. The system uses temporal logic to formulate the required properties for a railway interlocking system (RIS) as a case study and symbolic model verifier (SMV) to demonstrate the correct execution. From the simulation results, the effectiveness of the architecture is proved for verifying critical properties and detecting design faults through majority voting circuits. The proposed architecture has been synthesized in the Altera FPGA programmable chip with logic elements 33%, 52% area overhead, and frequency as 100 MHz. The system does meet its reliability requirements with the lowest reliability 91.333687 x \({10}^{-2}\) and failure rate 0.2 failure per hour at time 60 min. Finally, we think that adopting this architecture will enhance the trustworthiness and certification of CPS systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
2.
go back to reference Knight J (2012) Fundamentals of dependable computing for software engineers. CRC, Boca Raton Knight J (2012) Fundamentals of dependable computing for software engineers. CRC, Boca Raton
3.
go back to reference Khan AH, Khan ZH, Weiguo Z (2014) Model-Based Verification and Validation of Safety-Critical Embedded Real-Time Systems: Formation and Tools. In: Proc. Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles. Springer, Berlin, Heidelberg, pp 153–183 Khan AH, Khan ZH, Weiguo Z (2014) Model-Based Verification and Validation of Safety-Critical Embedded Real-Time Systems: Formation and Tools. In: Proc. Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles. Springer, Berlin, Heidelberg, pp 153–183
6.
go back to reference Mallavalli S, Fekih A (2017) A fault tolerant control approach for a quadrotor UAV subject to time varying disturbances and actuator faults. In: Proc. 2017 IEEE Conference on Control Technology and Applications (CCTA). pp 596–601 Mallavalli S, Fekih A (2017) A fault tolerant control approach for a quadrotor UAV subject to time varying disturbances and actuator faults. In: Proc. 2017 IEEE Conference on Control Technology and Applications (CCTA). pp 596–601
11.
go back to reference Edward A, Lee (2017) Introduction to embedded systems: a cyber-physical systems approach, Second edition. The MIT Press, Cambridge, Massachusetts Edward A, Lee (2017) Introduction to embedded systems: a cyber-physical systems approach, Second edition. The MIT Press, Cambridge, Massachusetts
12.
go back to reference Kumar P, Singh LK, Kumar C (2021) Model Based Verification of Safety-Critical Systems. In: Proc. 2021 2nd International Conference for Emerging Technology (INCET). IEEE, Belagavi, India, pp 1–9 Kumar P, Singh LK, Kumar C (2021) Model Based Verification of Safety-Critical Systems. In: Proc. 2021 2nd International Conference for Emerging Technology (INCET). IEEE, Belagavi, India, pp 1–9
14.
go back to reference Bartocci E, Falcone Y, Francalanza A, Reger G (2018) Introduction to Runtime Verification. In: Proc. Lectures on Runtime Verification. Springer International Publishing, Cham, pp 1–33 Bartocci E, Falcone Y, Francalanza A, Reger G (2018) Introduction to Runtime Verification. In: Proc. Lectures on Runtime Verification. Springer International Publishing, Cham, pp 1–33
18.
go back to reference Bennion M, Habli I (2014) A candid industrial evaluation of formal software verification using model checking. In: Proc. Companion Proceedings of the 36th International Conference on Software Engineering. ACM, pp 175–184 Bennion M, Habli I (2014) A candid industrial evaluation of formal software verification using model checking. In: Proc. Companion Proceedings of the 36th International Conference on Software Engineering. ACM, pp 175–184
20.
go back to reference Pace GJ (2012) Classifying Relations. In: Proc. Pace GJ (ed) Mathematics of Discrete Structures for Computer Science. Springer, Berlin, Heidelberg, pp 141–155 Pace GJ (2012) Classifying Relations. In: Proc. Pace GJ (ed) Mathematics of Discrete Structures for Computer Science. Springer, Berlin, Heidelberg, pp 141–155
21.
go back to reference Kang E-Y, Mu D, Huang L, Lan Q (2017) Verification and Validation of a Cyber-Physical System in the Automotive Domain. In: Proc. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, Prague, Czech Republic, pp 326–333 Kang E-Y, Mu D, Huang L, Lan Q (2017) Verification and Validation of a Cyber-Physical System in the Automotive Domain. In: Proc. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, Prague, Czech Republic, pp 326–333
23.
go back to reference Haqiq A, Bounabat B (2013) Verification of multi decisional reactive agent using SMV model checker. In: Proc. 2013 8th IEEE Design and Test Symposium. pp 1–6 Haqiq A, Bounabat B (2013) Verification of multi decisional reactive agent using SMV model checker. In: Proc. 2013 8th IEEE Design and Test Symposium. pp 1–6
28.
go back to reference Suryadevara J, Sapienza G, Seceleanu C et al (2014) Wind Turbine System: An Industrial Case Study in Formal Modeling and Verification. In: Proc. Artho C, Ölveczky PC (eds) Formal Techniques for Safety-Critical Systems. Springer International Publishing, Cham, pp 229–245 Suryadevara J, Sapienza G, Seceleanu C et al (2014) Wind Turbine System: An Industrial Case Study in Formal Modeling and Verification. In: Proc. Artho C, Ölveczky PC (eds) Formal Techniques for Safety-Critical Systems. Springer International Publishing, Cham, pp 229–245
29.
go back to reference Kastensmidt FL (2006) Fault-tolerance techniques for SRAM-based FPGAs. Springer, Dordrecht Kastensmidt FL (2006) Fault-tolerance techniques for SRAM-based FPGAs. Springer, Dordrecht
30.
go back to reference Wilkening M, Sridharan V, Li S et al (2014) Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults. In: Proc. 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. pp 293–305 Wilkening M, Sridharan V, Li S et al (2014) Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults. In: Proc. 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. pp 293–305
31.
go back to reference Pakonen A, Buzhinsky I (2019) Verification of fault-tolerant safety I&C systems using model checking. In: Proc. 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, Melbourne, Australia, pp 969–974 Pakonen A, Buzhinsky I (2019) Verification of fault-tolerant safety I&C systems using model checking. In: Proc. 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, Melbourne, Australia, pp 969–974
33.
go back to reference Hsiung P-A, Lin Y-H (2005) Modeling and Verification of Safety-Critical Systems Using Safecharts. In: Proc. Wang F (ed) Formal Techniques for Networked and Distributed Systems - FORTE 2005. Springer, Berlin, Heidelberg, pp 290–304 Hsiung P-A, Lin Y-H (2005) Modeling and Verification of Safety-Critical Systems Using Safecharts. In: Proc. Wang F (ed) Formal Techniques for Networked and Distributed Systems - FORTE 2005. Springer, Berlin, Heidelberg, pp 290–304
34.
go back to reference Cimatti A, Corvino R, Lazzaro A et al (2012) Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System. In: Proc. Madhusudan P, Seshia SA (eds) Computer Aided Verification. Springer, Berlin, Heidelberg, pp 378–393 Cimatti A, Corvino R, Lazzaro A et al (2012) Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System. In: Proc. Madhusudan P, Seshia SA (eds) Computer Aided Verification. Springer, Berlin, Heidelberg, pp 378–393
39.
go back to reference Murugesan A, Heimdahl MPE, Whalen MW et al (2017) From Requirements to Code: Model Based Development of a Medical Cyber Physical System. In: Proc. Huhn M, Williams L (eds) Software Engineering in Health Care. Springer International Publishing, Cham, pp 96–112 Murugesan A, Heimdahl MPE, Whalen MW et al (2017) From Requirements to Code: Model Based Development of a Medical Cyber Physical System. In: Proc. Huhn M, Williams L (eds) Software Engineering in Health Care. Springer International Publishing, Cham, pp 96–112
41.
go back to reference Askari Hemmat MH, Mohamed OA, Boukadoum M (2015) Formal modeling, verification and implementation of a train control system. In: Proc. 2015 27th International Conference on Microelectronics (ICM). IEEE, Casablanca, Morocco, pp 134–137 Askari Hemmat MH, Mohamed OA, Boukadoum M (2015) Formal modeling, verification and implementation of a train control system. In: Proc. 2015 27th International Conference on Microelectronics (ICM). IEEE, Casablanca, Morocco, pp 134–137
43.
go back to reference Ma W, Hei X (2012) An research for formal Verification of Safety-critical Software. Atlantis, pp 836–839 Ma W, Hei X (2012) An research for formal Verification of Safety-critical Software. Atlantis, pp 836–839
45.
go back to reference Shreya V, Nanda M (2016) Analysing MTL properties using NuSMV model checker. In: Proc. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, Bangalore, India, pp 817–820 Shreya V, Nanda M (2016) Analysing MTL properties using NuSMV model checker. In: Proc. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, Bangalore, India, pp 817–820
48.
go back to reference Khairullah SS, Mostafa AA (2020) Reliability and safety modeling of a digital feed-water control system. J Univ Babylon Pure Appl Sci 28 Khairullah SS, Mostafa AA (2020) Reliability and safety modeling of a digital feed-water control system. J Univ Babylon Pure Appl Sci 28
Metadata
Title
Formal Verification of a Dependable State Machine-Based Hardware Architecture for Safety-Critical Cyber-Physical Systems: Analysis, Design, and Implementation
Author
Shawkat Sabah Khairullah
Publication date
05-07-2024
Publisher
Springer US
Published in
Journal of Electronic Testing
Print ISSN: 0923-8174
Electronic ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-024-06126-6