Skip to main content
Top
Published in: Applicable Algebra in Engineering, Communication and Computing 5/2022

19-11-2020 | Original Paper

Formal weight enumerators and Chebyshev polynomials

Author: Masakazu Yamagishi

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A formal weight enumerator is a homogeneous polynomial in two variables which behaves like the Hamming weight enumerator of a self-dual linear code except that the coefficients are not necessarily nonnegative integers. The notion of formal weight enumerator was first introduced by Ozeki in connection with modular forms, and a systematic investigation of formal weight enumerators has been conducted by Chinen in connection with zeta functions and Riemann hypothesis for linear codes. In this paper, we establish a relation between formal weight enumerators and Chebyshev polynomials. Specifically, the condition for the existence of formal weight enumerators with prescribed parameters \((n,\varepsilon ,q)\) is given in terms of Chebyshev polynomials. According to the parity of n and the sign \(\varepsilon\), the four kinds of Chebyshev polynomials appear in the statement of the result. Further, we obtain explicit expressions of formal weight enumerators in the case where n is odd or \(\varepsilon =-1\) using Dickson polynomials, which generalize Chebyshev polynomials. We also state a conjecture from a viewpoint of binomial moments, and see that the results in this paper partially support the conjecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chinen, K.: Extremal invariant polynomials not satisfying the Riemann hypothesis. Appl. Algebra Eng. Commun. Comput. 30(4), 275–284 (2019)MathSciNetCrossRef Chinen, K.: Extremal invariant polynomials not satisfying the Riemann hypothesis. Appl. Algebra Eng. Commun. Comput. 30(4), 275–284 (2019)MathSciNetCrossRef
2.
go back to reference Chinen, K.: Divisible formal weight enumerators and extremal polynomials not satisfying the Riemann hypothesis. Discrete Math. 342(12), 111601 (2019)MathSciNetCrossRef Chinen, K.: Divisible formal weight enumerators and extremal polynomials not satisfying the Riemann hypothesis. Discrete Math. 342(12), 111601 (2019)MathSciNetCrossRef
3.
go back to reference Chinen, K.: On some families of certain divisible polynomials and their zeta functions. Tokyo J. Math. 43(1), 1–23 (2020)MathSciNetCrossRef Chinen, K.: On some families of certain divisible polynomials and their zeta functions. Tokyo J. Math. 43(1), 1–23 (2020)MathSciNetCrossRef
4.
go back to reference Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1993) Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1993)
5.
go back to reference MacWilliams, F.J., Sloane, N.J.: A. The Theory of Error-Correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977) MacWilliams, F.J., Sloane, N.J.: A. The Theory of Error-Correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977)
6.
7.
go back to reference Rivlin, T.J.: Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd edition. Pure and Applied Mathematics (New York). Wiley, New York (1990) Rivlin, T.J.: Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd edition. Pure and Applied Mathematics (New York). Wiley, New York (1990)
8.
go back to reference Sloane, N.J.A.: Self-Dual Codes and Lattices. Relations Between Combinatorics and Other Parts of Mathematics (Proceedings of Symposia in Pure Mathematics, Ohio State University, Columbus, Ohio, 1978), pp. 273–308, Proceedings of Symposia in Pure Mathematics, XXXIV, American Mathematical Society, Providence (1979) Sloane, N.J.A.: Self-Dual Codes and Lattices. Relations Between Combinatorics and Other Parts of Mathematics (Proceedings of Symposia in Pure Mathematics, Ohio State University, Columbus, Ohio, 1978), pp. 273–308, Proceedings of Symposia in Pure Mathematics, XXXIV, American Mathematical Society, Providence (1979)
9.
go back to reference Yamagishi, M.: Resultants of Chebyshev polynomials: the first, second, third, and fourth kinds. Can. Math. Bull. 58(2), 423–431 (2015)MathSciNetCrossRef Yamagishi, M.: Resultants of Chebyshev polynomials: the first, second, third, and fourth kinds. Can. Math. Bull. 58(2), 423–431 (2015)MathSciNetCrossRef
Metadata
Title
Formal weight enumerators and Chebyshev polynomials
Author
Masakazu Yamagishi
Publication date
19-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 5/2022
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00469-1

Other articles of this Issue 5/2022

Applicable Algebra in Engineering, Communication and Computing 5/2022 Go to the issue

Premium Partner