Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

01-12-2021 | THEORY OF METALS

Formation Enthalpies and Dilution Heats of FCC–FCC Binary Alloys Using Modified Ones of EAM Potentials

Authors: H. S. Jin, S. N. Ho, R. S. Kong, J. C. Cha, H. Yang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

We evaluated the formation enthalpies and the dilution heats of FCC–FCC (FCC: facet-centered cubic) binary alloys employing the modified ones of the embedded atom method (EAM) potentials for FCC metals. We have calculated the formation enthalpies in the whole composition range for 36 kinds of FCC–FCC binary alloys bearing FCC metals Ag, Al, Au, Cu, Ir, Ni, Pd, Pt, and Rh by the modified embedded atom method (MEAM) potentials for FCC metals proposed by Jin et al. [Appl. Phys. A120 (2015) 189], Johnson’s alloy potential form, and Vegard’s law. We have also modified the formulas to calculate the dilution heats of the binary alloy solutions using the MEAM potentials for FCC metals and evaluated the dilution heats of 72 kinds of FCC–FCC binary alloy solutions. The present results of the formation enthalpies and the dilution heats for all FCC–FCC binary alloys are in mainly agreement with the experimental data and the calculations by the Miedema theory. Our results agree with the experimental data and the Miedema theory results better than the precedent MEAM results.
Literature
1.
go back to reference M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett. 50, 1285–1288 (1983). CrossRef M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett. 50, 1285–1288 (1983). CrossRef
2.
go back to reference M. S. Daw and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984). CrossRef M. S. Daw and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984). CrossRef
3.
go back to reference B. Zhang, W. Hu, and X. Shu, Theory of Embedded Atom Method and Its Application to Materials Science: Atomic Scale Materials Design Theory (Hunan University Press, Changsha, 2003) [in Chinese]. B. Zhang, W. Hu, and X. Shu, Theory of Embedded Atom Method and Its Application to Materials Science: Atomic Scale Materials Design Theory (Hunan University Press, Changsha, 2003) [in Chinese].
4.
go back to reference W. Hu, X. Shu, and B. Zhang, “Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials,” Comput. Mater. Sci. 23, 175–189 (2002). CrossRef W. Hu, X. Shu, and B. Zhang, “Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials,” Comput. Mater. Sci. 23, 175–189 (2002). CrossRef
5.
go back to reference W. Hu, B. Zhang, B. Huang, F. Gao, and D. J. Bacon, “Analytic modified embedded atom potentials for HCP metals,” J. Phys. Condens. Matter 13, 1193–1213 (2001). CrossRef W. Hu, B. Zhang, B. Huang, F. Gao, and D. J. Bacon, “Analytic modified embedded atom potentials for HCP metals,” J. Phys. Condens. Matter 13, 1193–1213 (2001). CrossRef
6.
go back to reference X. Shu, PhD Thesis (Hunan University, Changsha, 2001). X. Shu, PhD Thesis (Hunan University, Changsha, 2001).
7.
go back to reference H.-S. Jin, J.-D. An, and Y.-S. Jong, “EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms” Appl. Phys. A 120, 189–197 (2015). CrossRef H.-S. Jin, J.-D. An, and Y.-S. Jong, “EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms” Appl. Phys. A 120, 189–197 (2015). CrossRef
8.
go back to reference H.-S. Jin, J.-Y. Pak, and Y.-S. Jong, “Study on the properties of vacancies and phonon dispersions by the improved ones of the modified analytic embedded atom method potentials for Al, Ni, and Ir,” Appl. Phys. A 123, 257–264 (2017). CrossRef H.-S. Jin, J.-Y. Pak, and Y.-S. Jong, “Study on the properties of vacancies and phonon dispersions by the improved ones of the modified analytic embedded atom method potentials for Al, Ni, and Ir,” Appl. Phys. A 123, 257–264 (2017). CrossRef
9.
go back to reference C.-G. Jon, H.-S. Jin, and C.-J. Hwang, “Improvement of modified analytic embedded atom method potentials for noble metals and Cu,” Radiat. Eff. Defects Solids 172, 575–589 (2017). CrossRef C.-G. Jon, H.-S. Jin, and C.-J. Hwang, “Improvement of modified analytic embedded atom method potentials for noble metals and Cu,” Radiat. Eff. Defects Solids 172, 575–589 (2017). CrossRef
10.
go back to reference R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554–12559 (1989). CrossRef R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554–12559 (1989). CrossRef
11.
go back to reference B. Zhang and Y. Quyang, “Calculations of the thermodynamic properties for binary hcp alloys with simple embedded atom method model,” Z. Phys. B 92, 431–435 (1993). CrossRef B. Zhang and Y. Quyang, “Calculations of the thermodynamic properties for binary hcp alloys with simple embedded atom method model,” Z. Phys. B 92, 431–435 (1993). CrossRef
12.
go back to reference B. Zhang and Y. Quyang, “Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method,” Phys. Rev. B 48, 3022–3029 (1993). B. Zhang and Y. Quyang, “Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method,” Phys. Rev. B 48, 3022–3029 (1993).
13.
go back to reference F. Fang, X. Shu, H. Deng, W. Hu, and M. Zhu, “Modified analytic EAM potentials for the binary immiscible alloy systems,” Mater. Sci. Eng., A 355, 357–367 (2003). CrossRef F. Fang, X. Shu, H. Deng, W. Hu, and M. Zhu, “Modified analytic EAM potentials for the binary immiscible alloy systems,” Mater. Sci. Eng., A 355, 357–367 (2003). CrossRef
14.
go back to reference R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM Int., Metal Park, OH, 1973). R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM Int., Metal Park, OH, 1973).
15.
go back to reference F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metals Alloys (North-Holland, Amsterdam, 1988). F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metals Alloys (North-Holland, Amsterdam, 1988).
16.
go back to reference M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727–2742 (1992). CrossRef M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727–2742 (1992). CrossRef
Metadata
Title
Formation Enthalpies and Dilution Heats of FCC–FCC Binary Alloys Using Modified Ones of EAM Potentials
Authors
H. S. Jin
S. N. Ho
R. S. Kong
J. C. Cha
H. Yang
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130135