Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2020

04-12-2019

Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys

Authors: A. D. Iams, J. S. Keist, T. A. Palmer

Published in: Metallurgical and Materials Transactions A | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The additive manufacturing of duplex stainless steels has been limited by the inability to maintain a balanced ferrite/austenite microstructure. In order to investigate the impact of the complex thermal histories inherent to the additive manufacturing process on austenite fractions and morphology, a laser-based directed energy deposition process was used to fabricate lean (UNS S32101), standard (UNS S32205), and super (UNS S32507) duplex structures. In these structures, the austenite phase fractions ranged from 16.1 ± 1.1 pct in the lean, to 38.5 ± 1.6 pct in the standard, and 58.3 ± 0.1 pct in the super duplex stainless steel grades. While the overall austenite levels were comparable to those found in wrought alloys, the austenite fractions increased with build height as preheating from previously deposited material promoted the ferrite to austenite transformation. Of the austenite morphologies observed in each of the duplex stainless steel grades, intragranular austenite was dominant, comprising between 55 and 76 pct of the austenite present within each build. The intragranular austenite formed during reheating and its formation was enhanced by the presence of submicron inclusions which originated from the powder feedstock and served as heterogenous nucleation sites. After post-process hot isostatic pressing heat treatment, the austenite morphology became more similar in appearance to that observed in the wrought condition. The overall austenite fractions in the post-processed lean (28.2 ± 0.7 pct), standard (57.6 ± 0.2 pct), and super (66.5 ± 0.3 pct) duplex grades increased over their respective as-deposited conditions and became more uniform with changes in build height.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Sandvik Osprey (Neath, UK).
 
2
Luvak Laboratories (Boylston, US).
 
3
Thermo-Calc Software (Solna SE).
 
4
Malvern Panalytical Ltd. (Royston, UK).
 
5
Quintus Technologies AMD Application Center (Columbus, US).
 
6
GE Sensing & Inspection Technologies (Cincinnati, US).
 
7
Volume Graphics, Inc. (Heidelberg, DE).
 
8
LECO Corporation (Saint Joseph, US).
 
9
Nikon Corporation (Tokyo, JP).
 
10
ThermoFisher Scientific (Waltham, US).
 
11
Oxford Instruments (Abingdon, UK).
 
12
Malvern Panalytical Ltd. (Royston, UK).
 
Literature
1.
go back to reference A. Vinoth-Jebaraj, L. Ajaykumar, C.R. Deepak, and K. V. V. Aditya: J. Adv. Res., 2017, vol. 8, pp. 183–99. A. Vinoth-Jebaraj, L. Ajaykumar, C.R. Deepak, and K. V. V. Aditya: J. Adv. Res., 2017, vol. 8, pp. 183–99.
2.
go back to reference Westinghouse Electric Company: Engineered Safety Features, AP1000 Design Control Document Revision 18, vol. 6, 2010. Westinghouse Electric Company: Engineered Safety Features, AP1000 Design Control Document Revision 18, vol. 6, 2010.
3.
go back to reference I. Alvarez-Armas and S. Degallaix-Moreuil, eds.: Duplex Stainless Steels, John Wiley & Sons, New Jersey, 2013. I. Alvarez-Armas and S. Degallaix-Moreuil, eds.: Duplex Stainless Steels, John Wiley & Sons, New Jersey, 2013.
4.
go back to reference R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, 1997. R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, 1997.
5.
go back to reference G. Mohammed, M. Ishak, S. Aqida, and H. Abdulhadi: Metals (Basel)., 2017, vol. 7, p. 39. G. Mohammed, M. Ishak, S. Aqida, and H. Abdulhadi: Metals (Basel)., 2017, vol. 7, p. 39.
6.
go back to reference A.J. Ramirez, J.C. Lippold, and S.D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97. A.J. Ramirez, J.C. Lippold, and S.D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97.
7.
go back to reference C.M. Garzón and A.J. Ramirez: Acta Mater., 2006, 54(12), pp. 3321–3331. C.M. Garzón and A.J. Ramirez: Acta Mater., 2006, 54(12), pp. 3321–3331.
8.
go back to reference J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38, pp. 464–75. J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38, pp. 464–75.
9.
go back to reference N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma: Mater. Charact., 2016, 112, pp. 20–9. N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma: Mater. Charact., 2016, 112, pp. 20–9.
10.
go back to reference T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70. T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70.
11.
go back to reference A. Igual-Muñoz, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz: Corrosion, 2005, vol. 61, pp. 693–705. A. Igual-Muñoz, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz: Corrosion, 2005, vol. 61, pp. 693–705.
12.
go back to reference J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, 84, pp. 43–53. J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, 84, pp. 43–53.
13.
go back to reference K.M. Lee, H. Cho, and D.C. Choi: J. Alloys Compd. 1999, 285, 156–161. K.M. Lee, H. Cho, and D.C. Choi: J. Alloys Compd. 1999, 285, 156–161.
14.
go back to reference R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De: JMEPEG, 1999, vol. 8, pp. 591–7. R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De: JMEPEG, 1999, vol. 8, pp. 591–7.
15.
go back to reference V. Muthupandi, P. Bala-Srinivasan, S.K. Seshadri, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 358, pp. 9–16. V. Muthupandi, P. Bala-Srinivasan, S.K. Seshadri, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 358, pp. 9–16.
16.
go back to reference V. Muthupandi, P. Bala-Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan: Mater. Lett., 2005, 59 (18), pp. 2305–2309. V. Muthupandi, P. Bala-Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan: Mater. Lett., 2005, 59 (18), pp. 2305–2309.
17.
go back to reference H. Sieurin and R. Sandstrom: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250–6. H. Sieurin and R. Sandstrom: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250–6.
18.
go back to reference J.M. Gomez de Salazar, A. Soria, and M.I. Barrena: J. Mater. Sci., 2007, vol. 42, pp. 4892–8. J.M. Gomez de Salazar, A. Soria, and M.I. Barrena: J. Mater. Sci., 2007, vol. 42, pp. 4892–8.
19.
go back to reference E.M. Westin: Weld. World, 2010, vol. 54, pp. 308–21. E.M. Westin: Weld. World, 2010, vol. 54, pp. 308–21.
20.
go back to reference A. Eghlimi, M. Shamanian, and K. Raeissi: Surf. Coat. Technol., 2014, 244, pp. 45–51. A. Eghlimi, M. Shamanian, and K. Raeissi: Surf. Coat. Technol., 2014, 244, pp. 45–51.
21.
go back to reference L. Karlsson and J. Börjesson: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 318–23. L. Karlsson and J. Börjesson: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 318–23.
22.
go back to reference Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28.
23.
go back to reference Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li: Corros. Sci., 2012, vol. 65, pp. 472–80. Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li: Corros. Sci., 2012, vol. 65, pp. 472–80.
24.
go back to reference Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, and Y. Guo: Corros. Sci., 2012, vol. 62, pp. 42–50. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, and Y. Guo: Corros. Sci., 2012, vol. 62, pp. 42–50.
25.
go back to reference T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.
26.
go back to reference K.D. Ramkumar, D. Mishra, B.G. Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A. Maximus: Mater. Des., 2015, vol. 66, pp. 356–65. K.D. Ramkumar, D. Mishra, B.G. Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A. Maximus: Mater. Des., 2015, vol. 66, pp. 356–65.
27.
go back to reference V.A. Hosseini, S. Wessman, K. Hurtig, and L. Karlsson: Mater. Des., 2016, vol. 98, pp. 88–97. V.A. Hosseini, S. Wessman, K. Hurtig, and L. Karlsson: Mater. Des., 2016, vol. 98, pp. 88–97.
28.
go back to reference J. Pekkarinen and V. Kujanpää: Phys. Procedia, 2010, vol. 5, pp. 517–23. J. Pekkarinen and V. Kujanpää: Phys. Procedia, 2010, vol. 5, pp. 517–23.
29.
go back to reference A. Mourad, A. Khourshid, and T. Sharef: Mater. Sci. Eng. A, 2012, vol. 549, pp. 105–13. A. Mourad, A. Khourshid, and T. Sharef: Mater. Sci. Eng. A, 2012, vol. 549, pp. 105–13.
30.
go back to reference Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang: Appl. Surf. Sci., 2018, vol. 435, pp. 352–66. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang: Appl. Surf. Sci., 2018, vol. 435, pp. 352–66.
31.
go back to reference J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117–31. J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117–31.
32.
go back to reference V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15. V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15.
33.
go back to reference K.P. Davidson and S. Singamneni: Mater. Manuf. Process., 2016, vol. 31, pp. 1543–55. K.P. Davidson and S. Singamneni: Mater. Manuf. Process., 2016, vol. 31, pp. 1543–55.
34.
go back to reference K.P. Davidson and S. Singamneni: Jom, 2017, vol. 69, pp. 569–74. K.P. Davidson and S. Singamneni: Jom, 2017, vol. 69, pp. 569–74.
35.
go back to reference K. Saeidi, L. Kevetkova, F. Lofaj, and Z. Shen: Mater. Sci. Eng. A, 2016, vol. 665, pp. 59–65. K. Saeidi, L. Kevetkova, F. Lofaj, and Z. Shen: Mater. Sci. Eng. A, 2016, vol. 665, pp. 59–65.
36.
go back to reference F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.-P. Hoyer, and M. Schaper: Mater. Des., 2017, 133, pp. 136–142. F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.-P. Hoyer, and M. Schaper: Mater. Des., 2017, 133, pp. 136–142.
37.
go back to reference M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, R. Aune, X. Ren, and O.M. Akselsen: MATEC Web of Conferences, 2018, vol. 188, pp. 1–8. M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, R. Aune, X. Ren, and O.M. Akselsen: MATEC Web of Conferences, 2018, vol. 188, pp. 1–8.
38.
go back to reference G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82. G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82.
39.
go back to reference ASTM E1019: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, ASTM International, West Conshohocken, PA, 2018. ASTM E1019: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, ASTM International, West Conshohocken, PA, 2018.
40.
go back to reference ASTM E1097: Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2012. ASTM E1097: Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2012.
41.
go back to reference ASTM 276: Standard Specification for Stainless Steel Bars and Shapes, West Conshohocken, PA, 2017. ASTM 276: Standard Specification for Stainless Steel Bars and Shapes, West Conshohocken, PA, 2017.
42.
go back to reference L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
43.
go back to reference N. Saunders and A. Peter-Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, New York, 1998. N. Saunders and A. Peter-Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, New York, 1998.
44.
go back to reference H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007. H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.
45.
go back to reference Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34. Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34.
46.
go back to reference ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013. ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.
47.
go back to reference ASTM B212: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013. ASTM B212: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.
48.
go back to reference ASTM B527: Standard Test Method for Determination of Tap Density of Metal Powders and Compounds, ASTM International, West Conshohocken, PA, 2015. ASTM B527: Standard Test Method for Determination of Tap Density of Metal Powders and Compounds, ASTM International, West Conshohocken, PA, 2015.
49.
go back to reference Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34. Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34.
50.
go back to reference J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit: J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528. J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit: J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528.
51.
go back to reference A. Kisasoz, A. Karaaslan, and Y. Bayrak: Met. Sci. Heat Treat., 2016, vol. 58, pp. 9–12. A. Kisasoz, A. Karaaslan, and Y. Bayrak: Met. Sci. Heat Treat., 2016, vol. 58, pp. 9–12.
52.
go back to reference ASTM E562: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA, 2011. ASTM E562: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA, 2011.
53.
go back to reference S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56. S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56.
54.
go back to reference ASTM E975: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA, 2013. ASTM E975: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA, 2013.
55.
go back to reference T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 159–71. T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 159–71.
56.
go back to reference T.A. Palmer, J.W. Elmer, and S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21. T.A. Palmer, J.W. Elmer, and S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21.
57.
go back to reference Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 134–50. Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 134–50.
58.
go back to reference J. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700. J. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.
59.
go back to reference S. Atamert and J.E. King: Zeitschrift für Met., 1991, vol. 82, pp. 230–9. S. Atamert and J.E. King: Zeitschrift für Met., 1991, vol. 82, pp. 230–9.
60.
go back to reference V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 2015, vol. 31, pp. 924–30. V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 2015, vol. 31, pp. 924–30.
61.
go back to reference Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang: Appl. Surf. Sci., 2017, 394, pp. 297–314. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang: Appl. Surf. Sci., 2017, 394, pp. 297–314.
62.
go back to reference Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, and J. Li: Alloy. Compd., 2016, vol. 658, pp. 1031–40. Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, and J. Li: Alloy. Compd., 2016, vol. 658, pp. 1031–40.
63.
go back to reference A.J. Ramirez, S.D. Brandi, and J.C. Lippold: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 301–13. A.J. Ramirez, S.D. Brandi, and J.C. Lippold: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 301–13.
64.
go back to reference Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Corros. Sci., 2017, 120, pp. 194–210. Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Corros. Sci., 2017, 120, pp. 194–210.
65.
go back to reference E. Hämäläinen, A. Laitinen, H. Hänninen, and J. Liimatainen: Mater. Sci. Technol., 1997, vol. 13, pp. 103–9. E. Hämäläinen, A. Laitinen, H. Hänninen, and J. Liimatainen: Mater. Sci. Technol., 1997, vol. 13, pp. 103–9.
66.
go back to reference A. Laitinen and H. Hanninen: Corrosion, 1996, vol. 52, pp. 295–306. A. Laitinen and H. Hanninen: Corrosion, 1996, vol. 52, pp. 295–306.
67.
go back to reference B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray: Metall. Mater. Trans. A, 2018, 49, pp. 3637-3650. B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray: Metall. Mater. Trans. A, 2018, 49, pp. 3637-3650.
68.
go back to reference E.C. Bain and H.W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, Ohio, 1966. E.C. Bain and H.W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, Ohio, 1966.
Metadata
Title
Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys
Authors
A. D. Iams
J. S. Keist
T. A. Palmer
Publication date
04-12-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2020
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05562-w

Other articles of this Issue 2/2020

Metallurgical and Materials Transactions A 2/2020 Go to the issue

Premium Partners