Skip to main content
Top
Published in: Journal of Materials Science 17/2018

29-05-2018 | Ceramics

Formation of D–VZn complex defects and possible p-type conductivity of ZnO nanoparticle via hydrogen adsorption

Authors: K. Senthilkumar, T. Yoshida, Y. Fujita

Published in: Journal of Materials Science | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hydrogen adsorption on surfaces and on defect sites of ZnO nanoparticles (NPs) has been studied by using Raman and Fourier transform infrared spectroscopic methods. The presence of hydrogen at defect sites bound to zinc vacancy with different coordinations has been confirmed. To further identify the existence of isolated VZn and H–VZn complexes in the ZnO NPs, coincidence Doppler broadening (CDB) spectroscopic studies have been performed with respect to the CDB spectra of a 99.9999% pure Al single crystal. The broad momentum dip ρL showed between 15–17 × 10−3 m0c suggests the trapping of positrons with the core electrons of 3p Zn. However, positron annihilation takes place between ρL 20–25 × 10−3 m0c and this may occur with an electron belonging to OH bonds (VZn–Hi–O). Here the lattice hydrogen H+ ion acts as a compensating centre, and it can bind with the VZn around the dislocation and stacking faults (SFs) core, which may produce the acceptor-type complex defect for p-type conductivity. Finally, the existence of SFs and dislocation defects, including edges and steps, was confirmed by transmission electron microscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lyons JL, Janotti A, Van de Walle CG (2009) Why nitrogen cannot lead to p-type conductivity in ZnO. Appl Phys Lett 95(25):252105CrossRef Lyons JL, Janotti A, Van de Walle CG (2009) Why nitrogen cannot lead to p-type conductivity in ZnO. Appl Phys Lett 95(25):252105CrossRef
2.
go back to reference Yi JB, Lim CC, Xing GZ, Fan HM, Van LH, Huang SL, Yang KS, Huang XL, Qin XB, Wang BY, Wu T, Wang L, Zhang HT, Gao XY, Liu T, Wee ATS, Feng YP, Ding J (2010) Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys Rev Lett 104(13):137201CrossRef Yi JB, Lim CC, Xing GZ, Fan HM, Van LH, Huang SL, Yang KS, Huang XL, Qin XB, Wang BY, Wu T, Wang L, Zhang HT, Gao XY, Liu T, Wee ATS, Feng YP, Ding J (2010) Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys Rev Lett 104(13):137201CrossRef
3.
go back to reference Limpijumnong S, Zhang SB, Wei S, Park CH (2004) Doping by large-size-mismatched impurities: the microscopic origin of arsenic or antimony-doped p-type zinc oxide. Phys Rev Lett 92(15):155504CrossRef Limpijumnong S, Zhang SB, Wei S, Park CH (2004) Doping by large-size-mismatched impurities: the microscopic origin of arsenic or antimony-doped p-type zinc oxide. Phys Rev Lett 92(15):155504CrossRef
4.
go back to reference Herng TS, Lau SP, Wang L, Zhao BC, Yu SF, Tanemura M, Akaike A, Teng KS (2009) Magnetotransport properties of p-type carbon-doped ZnO thin films. Appl Phys Lett 95(1):012505CrossRef Herng TS, Lau SP, Wang L, Zhao BC, Yu SF, Tanemura M, Akaike A, Teng KS (2009) Magnetotransport properties of p-type carbon-doped ZnO thin films. Appl Phys Lett 95(1):012505CrossRef
5.
go back to reference Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2009) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99(12):127201CrossRef Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2009) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99(12):127201CrossRef
6.
go back to reference Tang K, Gu SL, Ye JD, Zhu SM, Zhang R, Zheng YD (2017) Recent progress of the native defects and p-type doping of zinc oxide. Chin Phys B 26(4):047702CrossRef Tang K, Gu SL, Ye JD, Zhu SM, Zhang R, Zheng YD (2017) Recent progress of the native defects and p-type doping of zinc oxide. Chin Phys B 26(4):047702CrossRef
7.
go back to reference Sahu R, Gholap HB, Mounika G, Dileep K, Vishal B, Ghara S, Datta R (2016) Stable p-type conductivity in B and N co-doped ZnO epitaxial thin film. Phys Status Solidi B 253(3):504–508CrossRef Sahu R, Gholap HB, Mounika G, Dileep K, Vishal B, Ghara S, Datta R (2016) Stable p-type conductivity in B and N co-doped ZnO epitaxial thin film. Phys Status Solidi B 253(3):504–508CrossRef
8.
go back to reference Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys Rev B 66(7):073202CrossRef Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys Rev B 66(7):073202CrossRef
9.
go back to reference Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501CrossRef Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501CrossRef
10.
go back to reference Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ, Kwong DL (2007) p-type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 91(7):072101CrossRef Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ, Kwong DL (2007) p-type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 91(7):072101CrossRef
11.
go back to reference Zeng YJ, Ye ZZ, Xu WZ, Lu JG, He HP, Zhu LP, Zhao BH, Che Y, Zhang SB (2006) p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl Phys Lett 88(26):262103CrossRef Zeng YJ, Ye ZZ, Xu WZ, Lu JG, He HP, Zhu LP, Zhao BH, Che Y, Zhang SB (2006) p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl Phys Lett 88(26):262103CrossRef
12.
go back to reference Hsu YF, Xi YY, Tam KH, Djurišić AB, Luo J, Ling CC, Cheung CK, Ching AM, Chan WK, Deng X, Beling CD, Fung S, Cheah KW, Fong PWK, Surya CC (2008) Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv Funct Mater 18(7):1020–1030CrossRef Hsu YF, Xi YY, Tam KH, Djurišić AB, Luo J, Ling CC, Cheung CK, Ching AM, Chan WK, Deng X, Beling CD, Fung S, Cheah KW, Fong PWK, Surya CC (2008) Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv Funct Mater 18(7):1020–1030CrossRef
13.
go back to reference Reynolds JG, Reynolds CL Jr, Mohanta A, Muth JF, Rowe JE, Everitt HO, Aspnes DE (2013) Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 102(15):152114CrossRef Reynolds JG, Reynolds CL Jr, Mohanta A, Muth JF, Rowe JE, Everitt HO, Aspnes DE (2013) Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 102(15):152114CrossRef
14.
go back to reference Amini MN, Saniz R, Lamoeb D, Partoena B (2015) The role of the VZn–NO–H complex in the p-type conductivity in ZnO. Phys Chem Chem Phys 17(7):5485–5489CrossRef Amini MN, Saniz R, Lamoeb D, Partoena B (2015) The role of the VZn–NO–H complex in the p-type conductivity in ZnO. Phys Chem Chem Phys 17(7):5485–5489CrossRef
15.
go back to reference Karazhanov SZ, Marstein ES, Holt A (2009) Hydrogen complexes in Zn deficient ZnO. J Appl Phys 105(3):033712CrossRef Karazhanov SZ, Marstein ES, Holt A (2009) Hydrogen complexes in Zn deficient ZnO. J Appl Phys 105(3):033712CrossRef
16.
go back to reference Wardle MG, Goss JP, Briddon PR (2005) Theory of Fe Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys Rev B 72(15):155108CrossRef Wardle MG, Goss JP, Briddon PR (2005) Theory of Fe Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys Rev B 72(15):155108CrossRef
17.
go back to reference Lavrov EV, Weber J, Borrnert F, Van de Walle CG, Helbig R (2002) Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys Rev B 66(16):165205CrossRef Lavrov EV, Weber J, Borrnert F, Van de Walle CG, Helbig R (2002) Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys Rev B 66(16):165205CrossRef
18.
go back to reference Herklotz F, Lavrov EV, Vl Kolkovsky, Weber J, Stavola M (2010) Charge states of a hydrogen defect with a local vibrational mode at 3326 cm−1 in ZnO. Phys Rev B 82(11):115206CrossRef Herklotz F, Lavrov EV, Vl Kolkovsky, Weber J, Stavola M (2010) Charge states of a hydrogen defect with a local vibrational mode at 3326 cm−1 in ZnO. Phys Rev B 82(11):115206CrossRef
19.
go back to reference Senthilkumar K, Tokunaga M, Okamoto H, Senthilkumar O, Fujita Y (2010) Hydrogen related defect complexes in ZnO nanoparticles. Appl Phys Lett 97(9):091907CrossRef Senthilkumar K, Tokunaga M, Okamoto H, Senthilkumar O, Fujita Y (2010) Hydrogen related defect complexes in ZnO nanoparticles. Appl Phys Lett 97(9):091907CrossRef
20.
go back to reference Itohara D, Shinohara K, Yoshida T, Fujita Y (2016) p-Channel and n-channel thin-film-transistor operation on sprayed ZnO nanoparticle layers. J Nanomater 2016:8219326CrossRef Itohara D, Shinohara K, Yoshida T, Fujita Y (2016) p-Channel and n-channel thin-film-transistor operation on sprayed ZnO nanoparticle layers. J Nanomater 2016:8219326CrossRef
21.
go back to reference Chen ZQ, Betsuyaku K, Kawasuso A (2008) Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation. Phys Rev B 77(11):113204CrossRef Chen ZQ, Betsuyaku K, Kawasuso A (2008) Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation. Phys Rev B 77(11):113204CrossRef
22.
go back to reference Jena P, Ponnambalam MJ, Manninen M (1981) Positron annihilation in metal-vacancy-hydrogen complexes. Phys Rev B 24(5):2884CrossRef Jena P, Ponnambalam MJ, Manninen M (1981) Positron annihilation in metal-vacancy-hydrogen complexes. Phys Rev B 24(5):2884CrossRef
23.
go back to reference Senthilkumar K, Senthilkumar O, Morito S, Ohba T, Fujita Y (2012) Synthesis of zinc oxide nanoparticles by dc arc dusty plasma. J Nanopart Res 14(10):1205CrossRef Senthilkumar K, Senthilkumar O, Morito S, Ohba T, Fujita Y (2012) Synthesis of zinc oxide nanoparticles by dc arc dusty plasma. J Nanopart Res 14(10):1205CrossRef
24.
go back to reference Chichibu SF, Onuma T, Kubota M, Uedono A, Sota T, Tsukazaki A, Ohtomo A, Kawasaki M (2006) Improvements in quantum efficiency of excitonic emissions in ZnO epilayers by the elimination of point defects. J Appl Phys 99(9):093505CrossRef Chichibu SF, Onuma T, Kubota M, Uedono A, Sota T, Tsukazaki A, Ohtomo A, Kawasaki M (2006) Improvements in quantum efficiency of excitonic emissions in ZnO epilayers by the elimination of point defects. J Appl Phys 99(9):093505CrossRef
25.
go back to reference Klason P, Børseth TM, Zhao QX, Svensson BG, Kuznetsov AY, Bergman PJ, Willander M (2008) Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide. Solid State Commun 145(5–6):321–326CrossRef Klason P, Børseth TM, Zhao QX, Svensson BG, Kuznetsov AY, Bergman PJ, Willander M (2008) Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide. Solid State Commun 145(5–6):321–326CrossRef
26.
go back to reference Reynolds DC, Look DC, Jogai B, Nostrand JEV, Jones R, Jenny J (1998) Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO. Solid State Commun 106(10):701–704CrossRef Reynolds DC, Look DC, Jogai B, Nostrand JEV, Jones R, Jenny J (1998) Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO. Solid State Commun 106(10):701–704CrossRef
27.
go back to reference Li M, Xing G, Xing G, Wu B, Wu T, Zhang X, Sum TC (2013) Origin of green emission and charge trapping dynamics in ZnO nanowires. Phys Rev B 87(11):115309CrossRef Li M, Xing G, Xing G, Wu B, Wu T, Zhang X, Sum TC (2013) Origin of green emission and charge trapping dynamics in ZnO nanowires. Phys Rev B 87(11):115309CrossRef
28.
go back to reference Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves HR, Hofmann DM, Meyer BK (2002) Nitrogen-related local vibrational modes in ZnO:N. Appl Phys Lett 80(11):1909CrossRef Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves HR, Hofmann DM, Meyer BK (2002) Nitrogen-related local vibrational modes in ZnO:N. Appl Phys Lett 80(11):1909CrossRef
29.
go back to reference Clemmer DE, Dalleska NF, Armentrout PB (1991) Reaction of Zn+ with NO2. The gas-phase thermochemistry of ZnO. J Chem Phys 95(10):7263CrossRef Clemmer DE, Dalleska NF, Armentrout PB (1991) Reaction of Zn+ with NO2. The gas-phase thermochemistry of ZnO. J Chem Phys 95(10):7263CrossRef
30.
go back to reference Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM, Lorenz M, Grundmann M (2003) Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett 83(10):1974CrossRef Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM, Lorenz M, Grundmann M (2003) Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett 83(10):1974CrossRef
31.
go back to reference Haboeck U, Hoffmann A, Thomsen A, Zeuner A, Meyer BK (2005) High-energy vibrational modes in nitrogen-doped ZnO. Phys Status Solidi (b) 242(3):R21–R23CrossRef Haboeck U, Hoffmann A, Thomsen A, Zeuner A, Meyer BK (2005) High-energy vibrational modes in nitrogen-doped ZnO. Phys Status Solidi (b) 242(3):R21–R23CrossRef
32.
go back to reference D’Amico KL, McFeely FR, Solomon EI (1983) High resolution electron energy loss vibrational studies of carbon monoxide coordination to the (10-10) surface of zinc oxide. J Am Chem Soc 105(21):6380–6383CrossRef D’Amico KL, McFeely FR, Solomon EI (1983) High resolution electron energy loss vibrational studies of carbon monoxide coordination to the (10-10) surface of zinc oxide. J Am Chem Soc 105(21):6380–6383CrossRef
33.
go back to reference Nickel NH, Fleischer K (2003) Hydrogen local vibrational modes in zinc oxide. Phys Rev Lett 90(19):197402CrossRef Nickel NH, Fleischer K (2003) Hydrogen local vibrational modes in zinc oxide. Phys Rev Lett 90(19):197402CrossRef
34.
go back to reference Mann MM, Hustrulid A, Tate JT (1940) The ionization and dissociation of water vapor and ammonia by electron impact. Phys Rev 58(4):340CrossRef Mann MM, Hustrulid A, Tate JT (1940) The ionization and dissociation of water vapor and ammonia by electron impact. Phys Rev 58(4):340CrossRef
35.
go back to reference Lu X, Xu X, Wang N, Zhang Q, Ehara M, Nakatsuji H (1999) Heterolytic adsorption of H2 on ZnO (10-10) surface: an ab initio SPC cluster model study. J Phys Chem B 103(14):2689–2695CrossRef Lu X, Xu X, Wang N, Zhang Q, Ehara M, Nakatsuji H (1999) Heterolytic adsorption of H2 on ZnO (10-10) surface: an ab initio SPC cluster model study. J Phys Chem B 103(14):2689–2695CrossRef
36.
go back to reference Davidson JM, Sohail K (1995) A DRIFTS study of the surface and bulk reactions of hydrogen sulfide with high surface area zinc oxide. Ind Eng Chem Res 34(11):3675–3677CrossRef Davidson JM, Sohail K (1995) A DRIFTS study of the surface and bulk reactions of hydrogen sulfide with high surface area zinc oxide. Ind Eng Chem Res 34(11):3675–3677CrossRef
37.
go back to reference Scarano D, Spoto G, Bordiga S, Zecchina A (1992) Lateral interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM study. Surf Sci 276(1–3):281–298CrossRef Scarano D, Spoto G, Bordiga S, Zecchina A (1992) Lateral interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM study. Surf Sci 276(1–3):281–298CrossRef
38.
go back to reference Wang Y, Meyer B, Yin X, Kunat M, Langenberg D, Traeger F, Birkner A, Woll C (2005) Hydrogen induced metallicity on the ZnO (10-10) surface. Phys Rev Lett 95(26):266104CrossRef Wang Y, Meyer B, Yin X, Kunat M, Langenberg D, Traeger F, Birkner A, Woll C (2005) Hydrogen induced metallicity on the ZnO (10-10) surface. Phys Rev Lett 95(26):266104CrossRef
39.
go back to reference Brandt MS, Ager JW III, Gotzt W, Johnson NM, Harris JS Jr, Molnar R, Moustakas TD (1994) Local vibrational modes in Mg-doped gallium nitride. Phys Rev B 49(20):14758CrossRef Brandt MS, Ager JW III, Gotzt W, Johnson NM, Harris JS Jr, Molnar R, Moustakas TD (1994) Local vibrational modes in Mg-doped gallium nitride. Phys Rev B 49(20):14758CrossRef
40.
go back to reference Fabbri F, Villani M, Catellani A, Calzolari A, Cicero G, Calestani D, Calestani G, Zappettini A, Dierre B, Sekiguchi T, Salviati G (2014) Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci Rep 4:5158CrossRef Fabbri F, Villani M, Catellani A, Calzolari A, Cicero G, Calestani D, Calestani G, Zappettini A, Dierre B, Sekiguchi T, Salviati G (2014) Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci Rep 4:5158CrossRef
41.
go back to reference Koßmann J, Hattigb C (2012) Investigation of interstitial hydrogen and related defects in ZnO. Phys Chem Chem Phys 14(47):16392–16399CrossRef Koßmann J, Hattigb C (2012) Investigation of interstitial hydrogen and related defects in ZnO. Phys Chem Chem Phys 14(47):16392–16399CrossRef
42.
go back to reference Limpijumnong S, Zhang SB (2005) Resolving hydrogen binding sites by pressure—a first-principles prediction for ZnO. Appl Phys Lett 86(15):151910CrossRef Limpijumnong S, Zhang SB (2005) Resolving hydrogen binding sites by pressure—a first-principles prediction for ZnO. Appl Phys Lett 86(15):151910CrossRef
43.
go back to reference Čížek J, Žaludová N, Vlach M, Daniš S, Kuriplach J, Procházka I, Brauer G, Anwand W, Grambole D, Skorupa W, Gemma R, Kirchheim R, Pundt A (2008) Defect studies of ZnO single crystals electrochemically doped with hydrogen. J Appl Phys 103(5):053508CrossRef Čížek J, Žaludová N, Vlach M, Daniš S, Kuriplach J, Procházka I, Brauer G, Anwand W, Grambole D, Skorupa W, Gemma R, Kirchheim R, Pundt A (2008) Defect studies of ZnO single crystals electrochemically doped with hydrogen. J Appl Phys 103(5):053508CrossRef
44.
go back to reference Guo W, Allenic A, Chen YB, Pana XQ, Che Y, Hu ZD, Liu B (2007) Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition. Appl Phys Lett 90(24):242108CrossRef Guo W, Allenic A, Chen YB, Pana XQ, Che Y, Hu ZD, Liu B (2007) Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition. Appl Phys Lett 90(24):242108CrossRef
45.
go back to reference Ding Y, Yang R, Wang ZL (2006) Ordered zinc-vacancy induced Zn0.75Ox nanophase structure. Solid State Commun 138(8):390–394CrossRef Ding Y, Yang R, Wang ZL (2006) Ordered zinc-vacancy induced Zn0.75Ox nanophase structure. Solid State Commun 138(8):390–394CrossRef
46.
go back to reference Jacobs R, Zheng B, Puchala B, Voyles PM, Yankovich AB, Morgan DJ (2016) Counterintuitive reconstruction of the polar O-terminated ZnO surface with zinc vacancies and hydrogen. Phys Chem Lett 7(22):4483–4487CrossRef Jacobs R, Zheng B, Puchala B, Voyles PM, Yankovich AB, Morgan DJ (2016) Counterintuitive reconstruction of the polar O-terminated ZnO surface with zinc vacancies and hydrogen. Phys Chem Lett 7(22):4483–4487CrossRef
Metadata
Title
Formation of D–VZn complex defects and possible p-type conductivity of ZnO nanoparticle via hydrogen adsorption
Authors
K. Senthilkumar
T. Yoshida
Y. Fujita
Publication date
29-05-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2498-7

Other articles of this Issue 17/2018

Journal of Materials Science 17/2018 Go to the issue

Premium Partners