Skip to main content
Top
Published in: Cellulose 13/2021

22-07-2021 | Original Research

Formation of hairy cellulose nanocrystals by cryogrinding

Authors: Fatma Mahrous, Roya Koshani, Mandana Tavakolian, Kevin Conley, Theo G. M. van de Ven

Published in: Cellulose | Issue 13/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

From a green chemistry perspective, cryogrinding of cellulose fibers conducted under mild conditions is introduced as a rapid, facile, and scalable methodology for the mechanochemical synthesis of cellulose nanocrystals. Traditionally, they are synthesized in a solution using acid/oxidation-based methods in a multi-stage process. This work presents a method for the production of hairy carboxylated nanocrystalline cellulose (HNC) through a mechanochemical process from wood kraft pulp, using two different procedures: (1) dry-cryogrinding (HNC-1 and HNC-2), and (2) cryogrinding with mono-chloroacetate (MCA) under alkaline conditions (HNC-10 and HNC-40). Solid carbon-13 NMR and FTIR spectroscopy proved the presence of carboxyl groups on the nanoparticles. XRD shows that HNC-1 and HNC-2 corresponded to the type I allomorph of cellulose while HNC-10 and HNC-40 corresponded to cellulose II. The crystallinity of nanocelluloses decreases with increasing milling time. HNC nanoparticles produced by cryogrinding are electrosterically stable due to the presence of both protruding chains (“hairs”) and anionic charges, as confirmed by DLS. All HNC particles produced by cryogrinding are rod-shaped with a similar diameter, but HNC-1 and HNC-2 particles are about three times longer than HNC-10 and HNC-40. The unique molecular and crystal structure of the produced HNCs may be important for subsequent chemical modification and developing new applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, Zakowiecki D, Sawicki W, Lepek P, Kamysz W, Guzik L (2011) Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res 28:3220–3236PubMedPubMedCentralCrossRef Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, Zakowiecki D, Sawicki W, Lepek P, Kamysz W, Guzik L (2011) Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res 28:3220–3236PubMedPubMedCentralCrossRef
go back to reference Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496CrossRef Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496CrossRef
go back to reference Bardet M, Foray MF, Trân QK (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem 74:4386–4390PubMedCrossRef Bardet M, Foray MF, Trân QK (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem 74:4386–4390PubMedCrossRef
go back to reference Baytekin HT, Baytekin B, Incorvati JT, Grzybowski BA (2012) Material transfer and polarity reversal in contact charging. Angew Chem Int Ed 51:4843–4847CrossRef Baytekin HT, Baytekin B, Incorvati JT, Grzybowski BA (2012) Material transfer and polarity reversal in contact charging. Angew Chem Int Ed 51:4843–4847CrossRef
go back to reference Bhandari PN, Jones D, Hanna MA (2012) Carboxymethylation of cellulose using reactive extrusion. Carbohydr Polym 87:2246–2254CrossRef Bhandari PN, Jones D, Hanna MA (2012) Carboxymethylation of cellulose using reactive extrusion. Carbohydr Polym 87:2246–2254CrossRef
go back to reference Boukhoubza I, Khenfouch M, Achehboune M, Mothudi BM, Zorkani I, Jorio A (2019) X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide. J Phys Conf Ser 1292:012011CrossRef Boukhoubza I, Khenfouch M, Achehboune M, Mothudi BM, Zorkani I, Jorio A (2019) X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide. J Phys Conf Ser 1292:012011CrossRef
go back to reference Chang ST, Chang HT (2001) Comparisons of the photostability of esterified wood. Polym Degrad Stab 71:261–266CrossRef Chang ST, Chang HT (2001) Comparisons of the photostability of esterified wood. Polym Degrad Stab 71:261–266CrossRef
go back to reference Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A2:251–258CrossRef Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A2:251–258CrossRef
go back to reference Cheng D, Wei P, Zhang L, Cai J (2019) New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane. ACS Sustain Chem Eng 7:11850–11860CrossRef Cheng D, Wei P, Zhang L, Cai J (2019) New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane. ACS Sustain Chem Eng 7:11850–11860CrossRef
go back to reference de Souza Coelho CC, Silva RBS, Carvalho CWP, Rossi AL, Teixeira JA, Freitas-Silva O, Cabral LMC (2020) Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Bio Macromol 159:1048–1061CrossRef de Souza Coelho CC, Silva RBS, Carvalho CWP, Rossi AL, Teixeira JA, Freitas-Silva O, Cabral LMC (2020) Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Bio Macromol 159:1048–1061CrossRef
go back to reference Dias ARG, da Rosa ZE, Helbig E, de Moura FA, Vargas CG, Ciacco CF (2011) Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydr Polym 86:185–191CrossRef Dias ARG, da Rosa ZE, Helbig E, de Moura FA, Vargas CG, Ciacco CF (2011) Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydr Polym 86:185–191CrossRef
go back to reference Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262PubMedCrossRef Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262PubMedCrossRef
go back to reference El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohyd Polym 86:1221–1229CrossRef El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohyd Polym 86:1221–1229CrossRef
go back to reference El-Wakil NA, Hassan M (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109:2862–2871CrossRef El-Wakil NA, Hassan M (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109:2862–2871CrossRef
go back to reference Fiss BG, Hatherly L, Stein RS, Friscic T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7:7951–7959CrossRef Fiss BG, Hatherly L, Stein RS, Friscic T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7:7951–7959CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity Index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity Index. Cellulose 20:583–588CrossRef
go back to reference Golmohammadi H, Morales-Narvaez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446CrossRef Golmohammadi H, Morales-Narvaez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446CrossRef
go back to reference Gong J, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493CrossRef Gong J, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493CrossRef
go back to reference Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef
go back to reference Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L (2017) Potential applications of nanocellulose-containing materials in the biomedical field. Materials 10(8):977PubMedCentralCrossRef Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L (2017) Potential applications of nanocellulose-containing materials in the biomedical field. Materials 10(8):977PubMedCentralCrossRef
go back to reference Isogai A, Usuda M, Kato T, Ury T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef Isogai A, Usuda M, Kato T, Ury T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef
go back to reference Kamphunthong W, Hornsby P, Sirisinha K (2012) Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. J Appl Polym Sci 125:1642–1651CrossRef Kamphunthong W, Hornsby P, Sirisinha K (2012) Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. J Appl Polym Sci 125:1642–1651CrossRef
go back to reference Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2018) Green preparation of cellulose nanocrystal and its application. ACS Sustain Chem Eng 6:2954–2960CrossRef Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2018) Green preparation of cellulose nanocrystal and its application. ACS Sustain Chem Eng 6:2954–2960CrossRef
go back to reference Keshk SMAS, Yahia IS (2018) Physicochemical characterization of different cellulose polymorphs/graphene oxide composites and their antibacterial activity. Turk J Chem 42:562–571 Keshk SMAS, Yahia IS (2018) Physicochemical characterization of different cellulose polymorphs/graphene oxide composites and their antibacterial activity. Turk J Chem 42:562–571
go back to reference Kim JH, Lee D, Lee YH, Chen W, Lee SY (2019) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31:1804826CrossRef Kim JH, Lee D, Lee YH, Chen W, Lee SY (2019) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31:1804826CrossRef
go back to reference Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166CrossRef Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166CrossRef
go back to reference Koshani R, van de Ven TGM (2020a) Electroacoustic characterization of trimmed hairy nanocelluloses. J Colloid Interface Sci 563:252–260PubMedCrossRef Koshani R, van de Ven TGM (2020a) Electroacoustic characterization of trimmed hairy nanocelluloses. J Colloid Interface Sci 563:252–260PubMedCrossRef
go back to reference Koshani R, van de Ven TGM (2020b) Carboxylated cellulose nanocrystals developed by Cu-assisted H2O2 oxidation as green nanocarriers for efficient lysozyme immobilization. J Agric Food Chem 68:5938–5950PubMedCrossRef Koshani R, van de Ven TGM (2020b) Carboxylated cellulose nanocrystals developed by Cu-assisted H2O2 oxidation as green nanocarriers for efficient lysozyme immobilization. J Agric Food Chem 68:5938–5950PubMedCrossRef
go back to reference Koshani R, van de Ven TGM, Madadlou A (2018) Characterization of carboxylated cellulose nanocrytals isolated through catalyst-assisted H2O2 oxidation in a one-step procedure. J Agric Food Chem 66:7692–7700PubMedCrossRef Koshani R, van de Ven TGM, Madadlou A (2018) Characterization of carboxylated cellulose nanocrytals isolated through catalyst-assisted H2O2 oxidation in a one-step procedure. J Agric Food Chem 66:7692–7700PubMedCrossRef
go back to reference Kwiczak-Yiğitbaşı J, Laçin Ö, Demir M, Ahan RE, Şeker UÖŞ, Baytekin B (2020) A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chem 22:455–464CrossRef Kwiczak-Yiğitbaşı J, Laçin Ö, Demir M, Ahan RE, Şeker UÖŞ, Baytekin B (2020) A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chem 22:455–464CrossRef
go back to reference Labib ME, Robertson AA (1980) The conductometric titration of latices. J Colloid Interface Sci 77:151–161CrossRef Labib ME, Robertson AA (1980) The conductometric titration of latices. J Colloid Interface Sci 77:151–161CrossRef
go back to reference Lacin O, Kwiczak-Yigitbaşı J, Erkan M, Cevher SC, Baytekin B (2019) The morphological changes upon cryomilling of cellulose and concurrent generation of mechanoradicals. Polym Degrad Stab 168:108945CrossRef Lacin O, Kwiczak-Yigitbaşı J, Erkan M, Cevher SC, Baytekin B (2019) The morphological changes upon cryomilling of cellulose and concurrent generation of mechanoradicals. Polym Degrad Stab 168:108945CrossRef
go back to reference Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromol 12:650–659CrossRef Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromol 12:650–659CrossRef
go back to reference Li MC, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016PubMedCrossRef Li MC, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016PubMedCrossRef
go back to reference Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597CrossRef Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597CrossRef
go back to reference Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef
go back to reference Lu QL, Li XY, Tang LR, Lu BL, Huang B (2015) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204CrossRef Lu QL, Li XY, Tang LR, Lu BL, Huang B (2015) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204CrossRef
go back to reference Lu Q, Lu L, Li Y, Huang B (2019) Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy. Cellulose 26:7741–7751CrossRef Lu Q, Lu L, Li Y, Huang B (2019) Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy. Cellulose 26:7741–7751CrossRef
go back to reference Luo W, Abbas ME, Zhu L, Deng K, Tang H (2008) Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal Chim Acta 629:1–5PubMedCrossRef Luo W, Abbas ME, Zhu L, Deng K, Tang H (2008) Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal Chim Acta 629:1–5PubMedCrossRef
go back to reference Mondal Md. IH, Yaesmin S, Rahman Md. S (2015) Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int J biol macromol 79:144–150 Mondal Md. IH, Yaesmin S, Rahman Md. S (2015) Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int J biol macromol 79:144–150
go back to reference Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef
go back to reference Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef
go back to reference Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquini D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027CrossRef Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquini D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027CrossRef
go back to reference Nge TT, Lee SH, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852CrossRef Nge TT, Lee SH, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852CrossRef
go back to reference Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A 376:20170047CrossRef Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc A 376:20170047CrossRef
go back to reference Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391PubMedCrossRef Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391PubMedCrossRef
go back to reference Ohura T, Tsutaki Y, Sakaguchi M (2014) Novel synthesis of cellulose-based diblock copolymer of poly (hydroxyethyl methacrylate) by mechanochemical reaction. Sci World J 2014:1–4CrossRef Ohura T, Tsutaki Y, Sakaguchi M (2014) Novel synthesis of cellulose-based diblock copolymer of poly (hydroxyethyl methacrylate) by mechanochemical reaction. Sci World J 2014:1–4CrossRef
go back to reference Pas T, Smeets B, Ramon H, Van Schepdael A, Mansour M, Koekoekx R, Clasen C, Vergauwen B, Van den Mooter G (2020) Mechanodegradation of polymers: a limiting factor of mechanochemical activation in the production of amorphous solid dispersions by cryomilling. Mol Pharm 17:2987–2999PubMedCrossRef Pas T, Smeets B, Ramon H, Van Schepdael A, Mansour M, Koekoekx R, Clasen C, Vergauwen B, Van den Mooter G (2020) Mechanodegradation of polymers: a limiting factor of mechanochemical activation in the production of amorphous solid dispersions by cryomilling. Mol Pharm 17:2987–2999PubMedCrossRef
go back to reference Rafieian F, Shahedi M, Keramat J, Simonsen J (2014) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind Crops Prod 53:282–288CrossRef Rafieian F, Shahedi M, Keramat J, Simonsen J (2014) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind Crops Prod 53:282–288CrossRef
go back to reference Safari S, van de Ven TGM (2016) Effect of water vapor adsorption on electrical properties of carbon nanotube/nanocrystalline cellulose composites. ACS Appl Mater Interfaces 8:9483–9489PubMedCrossRef Safari S, van de Ven TGM (2016) Effect of water vapor adsorption on electrical properties of carbon nanotube/nanocrystalline cellulose composites. ACS Appl Mater Interfaces 8:9483–9489PubMedCrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef
go back to reference Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nanocellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263CrossRef Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nanocellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263CrossRef
go back to reference Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef
go back to reference Scherrer P (1918) Determination of the size and internal structure of colloidal particles using X-rays. Nachr Ges Wiss Göttingen 2:98–100 Scherrer P (1918) Determination of the size and internal structure of colloidal particles using X-rays. Nachr Ges Wiss Göttingen 2:98–100
go back to reference Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Cao H, Xu Q, Bu Y (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr Polym 234:115942PubMedCrossRef Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Cao H, Xu Q, Bu Y (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr Polym 234:115942PubMedCrossRef
go back to reference Sheikhi A, Li N, van de Ven TGM, Kakkar A (2016) Macromolecule-based platforms for developing tailor-made formulations for scale inhibition Environ. Sci Water Res Technol 2:71–84CrossRef Sheikhi A, Li N, van de Ven TGM, Kakkar A (2016) Macromolecule-based platforms for developing tailor-made formulations for scale inhibition Environ. Sci Water Res Technol 2:71–84CrossRef
go back to reference Sheikhi A, Safari S, Yang H, van de Ven TGM (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces 7:11301–11308PubMedCrossRef Sheikhi A, Safari S, Yang H, van de Ven TGM (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces 7:11301–11308PubMedCrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef
go back to reference Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483CrossRef Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483CrossRef
go back to reference Song K, Ji Y, Wang L, Wei Y, Yu Z (2018) A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis. J Clean Prod 196:1169–1175CrossRef Song K, Ji Y, Wang L, Wei Y, Yu Z (2018) A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis. J Clean Prod 196:1169–1175CrossRef
go back to reference Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373CrossRef Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373CrossRef
go back to reference Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef
go back to reference Tanvir A, Al-Maadeed MA, Hassan MK (2017) Secondary chain motion and mechanical properties of γ-irradiated-regenerated cellulose films. Starch-Stärke 69:1500329CrossRef Tanvir A, Al-Maadeed MA, Hassan MK (2017) Secondary chain motion and mechanical properties of γ-irradiated-regenerated cellulose films. Starch-Stärke 69:1500329CrossRef
go back to reference Tavakolian M, Lerner J, Tovar FM, Frances J, van de Ven TGM, Kakkar A (2019b) Dendrimer directed assembly of dicarboxylated hairy nanocellulose. J Colloid Interface Sci 541:444–453PubMedCrossRef Tavakolian M, Lerner J, Tovar FM, Frances J, van de Ven TGM, Kakkar A (2019b) Dendrimer directed assembly of dicarboxylated hairy nanocellulose. J Colloid Interface Sci 541:444–453PubMedCrossRef
go back to reference Tavakolian M, Okshevsky M, van de Ven TGM, Tufenkji N (2018) Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl Mater Interfaces 10:33827–33838PubMedCrossRef Tavakolian M, Okshevsky M, van de Ven TGM, Tufenkji N (2018) Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl Mater Interfaces 10:33827–33838PubMedCrossRef
go back to reference Tavakolian M, Wiebe H, Sadeghi MA, van de Ven TGM (2019a) Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Appl Mater Interfaces 12:5040–5049CrossRef Tavakolian M, Wiebe H, Sadeghi MA, van de Ven TGM (2019a) Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Appl Mater Interfaces 12:5040–5049CrossRef
go back to reference van de Ven TGM, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114PubMedCrossRef van de Ven TGM, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114PubMedCrossRef
go back to reference Wang H (1994) Step size, scanning speed and shape of X-ray diffraction peak. J Appl Crystallography 27:716–722 Wang H (1994) Step size, scanning speed and shape of X-ray diffraction peak. J Appl Crystallography 27:716–722
go back to reference Wang Y, Chen L (2014) Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. ACS Appl Mater Interfaces 6:1709–1718PubMedCrossRef Wang Y, Chen L (2014) Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. ACS Appl Mater Interfaces 6:1709–1718PubMedCrossRef
go back to reference Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316CrossRef Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316CrossRef
go back to reference Widiyastuti W, Balgis R, Setyawan H (2019) Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26:9583–9598CrossRef Widiyastuti W, Balgis R, Setyawan H (2019) Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26:9583–9598CrossRef
go back to reference Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:1–25 Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:1–25
go back to reference Yan FY, Krishniah D, Rajin M, Bono A (2009) Cellulose extraction from palm kernel cake using liquid phase oxidation. J Eng Sci Technol 4:57–68 Yan FY, Krishniah D, Rajin M, Bono A (2009) Cellulose extraction from palm kernel cake using liquid phase oxidation. J Eng Sci Technol 4:57–68
go back to reference Yang H, Alam MdN, van de Ven TGM (2013b) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875CrossRef Yang H, Alam MdN, van de Ven TGM (2013b) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875CrossRef
go back to reference Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703CrossRef Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703CrossRef
go back to reference Yang D, Peng XW, Zhong LX, Cao XF, Chen W, Sun RC (2013a) Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals. Cellulose 20:2427–2437CrossRef Yang D, Peng XW, Zhong LX, Cao XF, Chen W, Sun RC (2013a) Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals. Cellulose 20:2427–2437CrossRef
go back to reference Yang Q, Saito T, Berglund LA, Isogai A (2015) Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 42:17957–17963CrossRef Yang Q, Saito T, Berglund LA, Isogai A (2015) Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 42:17957–17963CrossRef
go back to reference Ye J, Schoenung JM (2004) Technical cost modeling for the mechanical milling at cryogenic temperature (cryomilling). Adv Eng Mater 6:656–664CrossRef Ye J, Schoenung JM (2004) Technical cost modeling for the mechanical milling at cryogenic temperature (cryomilling). Adv Eng Mater 6:656–664CrossRef
go back to reference Youssefian S (2019) Conformational transformation of pH-responsive hairy cellulose nanocrystalloids in salt-free dilute solutions. Biomacromol 20:2839–2851CrossRef Youssefian S (2019) Conformational transformation of pH-responsive hairy cellulose nanocrystalloids in salt-free dilute solutions. Biomacromol 20:2839–2851CrossRef
go back to reference Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J (2014) Reinforcement of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2:8479–8489PubMedCrossRef Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J (2014) Reinforcement of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2:8479–8489PubMedCrossRef
go back to reference Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643CrossRef Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643CrossRef
go back to reference Zhang J, Li D, Zhang X, Shi Y (1993) Solvent effect on carboxymethylation of cellulose. J Appl Polym Sci 49:741–746CrossRef Zhang J, Li D, Zhang X, Shi Y (1993) Solvent effect on carboxymethylation of cellulose. J Appl Polym Sci 49:741–746CrossRef
Metadata
Title
Formation of hairy cellulose nanocrystals by cryogrinding
Authors
Fatma Mahrous
Roya Koshani
Mandana Tavakolian
Kevin Conley
Theo G. M. van de Ven
Publication date
22-07-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 13/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04092-2

Other articles of this Issue 13/2021

Cellulose 13/2021 Go to the issue