Skip to main content
Top
Published in: Journal of Nanoparticle Research 8/2012

01-08-2012 | Research Paper

Formation of modulated structures in single-crystalline hexagonal α-Fe2O3 nanowires

Authors: R. S. Cai, T. Li, Y. Q. Wang, C. Wang, L. Yuan, G. W. Zhou

Published in: Journal of Nanoparticle Research | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructures and growth mechanism of Fe2O3 nanowires (NWs) synthesized by thermal oxidation of iron are studied in detail by transmission electron microscopy. Three different structures, single-crystalline, bicrystalline, and tricrystalline, are observed in the NWs. It is found that single-crystalline Fe2O3 NWs have a hexagonal structure while bicrystalline and tricrystalline NWs possess a cubic one. The differences in the electronic structures of the three Fe2O3 NWs are examined by electron energy-loss spectroscopy. A modulated structure with a periodicity of 1.53 nm is observed in single-crystalline Fe2O3 NWs, but not in bicrystalline or tricrystalline Fe2O3 NWs. The formation of the modulated structure in single-crystalline NWs is attributed to the periodical appearance of stacking faults, because of the shear stress occurred during the growth process. NWs possessing a cubic γ-Fe2O3 structure tend to coalesce into the bicrystalline or tricrystalline NWs whereas NWs with the hexagonal α-Fe2O3 structure prefer to grow as single-crystalline NWs. The formation mechanism of Fe2O3 NWs with the different morphologies is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bjork MT, Ohlsson BJ, Sass T, Persson AI, Thelander C, Magnusson MH, Deppert K, Wallenberg LR, Samuelson L (2002) One-dimensional steeplechase for electrons realized. Nano Lett 2:87–89CrossRef Bjork MT, Ohlsson BJ, Sass T, Persson AI, Thelander C, Magnusson MH, Deppert K, Wallenberg LR, Samuelson L (2002) One-dimensional steeplechase for electrons realized. Nano Lett 2:87–89CrossRef
go back to reference Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586CrossRef Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586CrossRef
go back to reference Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan DY, Yan PX (2008a) CuO nanowires synthesized by thermal oxidation route. J Alloys Compd 454:268–273CrossRef Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan DY, Yan PX (2008a) CuO nanowires synthesized by thermal oxidation route. J Alloys Compd 454:268–273CrossRef
go back to reference Chen ZQ, Cvelbar U, Mozetic M, He JQ, Sunkara MK (2008b) Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem Mater 20:3224–3228CrossRef Chen ZQ, Cvelbar U, Mozetic M, He JQ, Sunkara MK (2008b) Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem Mater 20:3224–3228CrossRef
go back to reference Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL (2006) Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Adv Funct Mater 16:2243–2251CrossRef Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL (2006) Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Adv Funct Mater 16:2243–2251CrossRef
go back to reference Colliex C, Manoubi T, Ortiz C (1991) Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. Phys Rev B 44:11402–11411CrossRef Colliex C, Manoubi T, Ortiz C (1991) Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. Phys Rev B 44:11402–11411CrossRef
go back to reference Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, New York Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, New York
go back to reference Cvelbar U, Chen ZQ, Sunkara MK, Mozetic M (2008) Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4:1610–1614CrossRef Cvelbar U, Chen ZQ, Sunkara MK, Mozetic M (2008) Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4:1610–1614CrossRef
go back to reference Dong Z, Kashkarov P, Zhang H (2010) Monte Carlo study for the growth of α-Fe2O3 nanowires synthesized by thermal oxidation of iron. Nanoscale 2:524–528CrossRef Dong Z, Kashkarov P, Zhang H (2010) Monte Carlo study for the growth of α-Fe2O3 nanowires synthesized by thermal oxidation of iron. Nanoscale 2:524–528CrossRef
go back to reference Fu YY, Chen J, Zhang H (2001) Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett 350:491CrossRef Fu YY, Chen J, Zhang H (2001) Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett 350:491CrossRef
go back to reference Goncalves AM, Campos LC, Ferlauto AS, Lacerda RG (2009) On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys 106:034303CrossRef Goncalves AM, Campos LC, Ferlauto AS, Lacerda RG (2009) On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys 106:034303CrossRef
go back to reference Gudiksen MS, Lauhon LJ, Wang JF, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620CrossRef Gudiksen MS, Lauhon LJ, Wang JF, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620CrossRef
go back to reference Han Q, Liu ZH, Xu YY, Chen ZY, Wang TM, Zhang H (2007) Growth and properties of single-crystalline γ-Fe2O3 nanowires. J Phys Chem C 111:5034–5038CrossRef Han Q, Liu ZH, Xu YY, Chen ZY, Wang TM, Zhang H (2007) Growth and properties of single-crystalline γ-Fe2O3 nanowires. J Phys Chem C 111:5034–5038CrossRef
go back to reference Hiralal P, Unalan HE, Wijiayantha KGU, Kursumovie A, Jefferson D, MacManus-Driscoll JL, Amaratunga GAJ (2008) Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron. Nanotechnology 19:455608CrossRef Hiralal P, Unalan HE, Wijiayantha KGU, Kursumovie A, Jefferson D, MacManus-Driscoll JL, Amaratunga GAJ (2008) Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron. Nanotechnology 19:455608CrossRef
go back to reference Jiang Y, Meng XM, Liu J, Hong ZR, Lee CS, Lee ST (2003) ZnS nanowires with wurtzite polytype modulated structure. Adv Mater 15:1195–1198CrossRef Jiang Y, Meng XM, Liu J, Hong ZR, Lee CS, Lee ST (2003) ZnS nanowires with wurtzite polytype modulated structure. Adv Mater 15:1195–1198CrossRef
go back to reference Kumar A, Srivastava AK, Tiwari P, Nandedkar RV (2004) The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J Phys Condens Matter 16:8531–8543CrossRef Kumar A, Srivastava AK, Tiwari P, Nandedkar RV (2004) The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J Phys Condens Matter 16:8531–8543CrossRef
go back to reference Lee YC, Chueh YL, Hsieh CH, Chang MT, Chou LJ, Wang ZL, Lan YW, Chen CD, Kurata H, Isoda S (2007) p-type α-Fe2O3 nanowires and their n-type transition in a reductive ambient. Small 3:1356–1361CrossRef Lee YC, Chueh YL, Hsieh CH, Chang MT, Chou LJ, Wang ZL, Lan YW, Chen CD, Kurata H, Isoda S (2007) p-type α-Fe2O3 nanowires and their n-type transition in a reductive ambient. Small 3:1356–1361CrossRef
go back to reference Liu SQ, Huang KL (2005) Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol Energy Mater Sol Cells 85:125–131 Liu SQ, Huang KL (2005) Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol Energy Mater Sol Cells 85:125–131
go back to reference Mema R, Yuan L, Du QT, Wang YQ, Zhou GW (2011) Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem Phys Lett 512:87–91CrossRef Mema R, Yuan L, Du QT, Wang YQ, Zhou GW (2011) Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem Phys Lett 512:87–91CrossRef
go back to reference Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Sainio J, Kauppinen EI (2009) Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2:373–379CrossRef Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Sainio J, Kauppinen EI (2009) Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2:373–379CrossRef
go back to reference Rachauskas S, Nasibulin AG, Jiang H, Tian Y, Kleshch VI, Sainio J, Obraztsova ED, Bokova SN, Obraztsov AN, Kauppinen EI (2009) A novel method for metal oxide nanowire synthesis. Nanotechnology 20:165603CrossRef Rachauskas S, Nasibulin AG, Jiang H, Tian Y, Kleshch VI, Sainio J, Obraztsova ED, Bokova SN, Obraztsov AN, Kauppinen EI (2009) A novel method for metal oxide nanowire synthesis. Nanotechnology 20:165603CrossRef
go back to reference Shimojo M, Takeguchi M, Furuya K (2006) Formation of crystalline iron oxide nanostructures by electron beam-induced deposition at room temperature. Nanotechnology 17:3637CrossRef Shimojo M, Takeguchi M, Furuya K (2006) Formation of crystalline iron oxide nanostructures by electron beam-induced deposition at room temperature. Nanotechnology 17:3637CrossRef
go back to reference Srivastava H, Tiwari P, Srivastava AK, Nandedkar RV (2007) Growth and characterization of α-Fe2O3 nanowires. J Appl Phys 102:054303CrossRef Srivastava H, Tiwari P, Srivastava AK, Nandedkar RV (2007) Growth and characterization of α-Fe2O3 nanowires. J Appl Phys 102:054303CrossRef
go back to reference Tepper T, Ilievski F, Ross CA, Zaman TR, Ram RJ, Yung SY, Stadler B (2003) Magneto-optical properties of iron oxide films. J Appl Phys 93:6948–6950CrossRef Tepper T, Ilievski F, Ross CA, Zaman TR, Ram RJ, Yung SY, Stadler B (2003) Magneto-optical properties of iron oxide films. J Appl Phys 93:6948–6950CrossRef
go back to reference Voss DA, Butler EP, Mitchell TE (1982) The growth of hematite blades during the high temperature oxidation of iron. Metall Mater Trans A 13:929–935CrossRef Voss DA, Butler EP, Mitchell TE (1982) The growth of hematite blades during the high temperature oxidation of iron. Metall Mater Trans A 13:929–935CrossRef
go back to reference Wang RM, Chen YF, Fu YY, Zhang H, Kisielowski C (2005a) Bicrystalline hematite nanowires. J Phys Chem B 109:12245–12249CrossRef Wang RM, Chen YF, Fu YY, Zhang H, Kisielowski C (2005a) Bicrystalline hematite nanowires. J Phys Chem B 109:12245–12249CrossRef
go back to reference Wang YQ, Smirani R, Ross GG (2005b) Stacking faults in Si nanocrystals. Appl Phys Lett 86:221920CrossRef Wang YQ, Smirani R, Ross GG (2005b) Stacking faults in Si nanocrystals. Appl Phys Lett 86:221920CrossRef
go back to reference Wang YQ, Smirani R, Ross GG, Schiettekatte F (2005c) Ordered coalescence of Si nanocrystals in SiO2. Phys Rev B 71:161310RCrossRef Wang YQ, Smirani R, Ross GG, Schiettekatte F (2005c) Ordered coalescence of Si nanocrystals in SiO2. Phys Rev B 71:161310RCrossRef
go back to reference Wang YQ, Liang WS, Geng CY (2009) Coalescence behavior of gold nanoparticles. Nanoscale Res Lett 4:684–688CrossRef Wang YQ, Liang WS, Geng CY (2009) Coalescence behavior of gold nanoparticles. Nanoscale Res Lett 4:684–688CrossRef
go back to reference Wen XG, Wang SH, Ding Y, Wang ZL, Yang SH (2005) Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B 109:215CrossRef Wen XG, Wang SH, Ding Y, Wang ZL, Yang SH (2005) Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B 109:215CrossRef
go back to reference Yuan L, Wang YQ, Mema R, Zhou GW (2011) Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater 59:2491–2500CrossRef Yuan L, Wang YQ, Mema R, Zhou GW (2011) Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater 59:2491–2500CrossRef
go back to reference Yuan L, Wang YQ, Cai RS, Jiang QK, Wang JB, Li BQ, Sharma A, Zhou GW (2012) The origin of hematite nanowire growth during the thermal oxidation of iron. Mater Sci Eng B 177:327–336CrossRef Yuan L, Wang YQ, Cai RS, Jiang QK, Wang JB, Li BQ, Sharma A, Zhou GW (2012) The origin of hematite nanowire growth during the thermal oxidation of iron. Mater Sci Eng B 177:327–336CrossRef
go back to reference Zhang DH, Liu ZQ, Hau S, Li C, Lei B, Stewart MD, Tour JM, Zhou CW (2004) Magnetite (Fe3O4) core-shell nanowires: synthesis and magnetoresistance. Nano Lett 4:2151–2155CrossRef Zhang DH, Liu ZQ, Hau S, Li C, Lei B, Stewart MD, Tour JM, Zhou CW (2004) Magnetite (Fe3O4) core-shell nanowires: synthesis and magnetoresistance. Nano Lett 4:2151–2155CrossRef
Metadata
Title
Formation of modulated structures in single-crystalline hexagonal α-Fe2O3 nanowires
Authors
R. S. Cai
T. Li
Y. Q. Wang
C. Wang
L. Yuan
G. W. Zhou
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 8/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1073-4

Other articles of this Issue 8/2012

Journal of Nanoparticle Research 8/2012 Go to the issue

Premium Partners