Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2020

01-03-2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at % W

Authors: Y. T. Ji, H. L. Suo, L. Ma, Z. Wang, D. Yu, K. Shaheen, J. Cui, J. Liu, M. M. Gao

Published in: Physics of Metals and Metallography | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work the formation of strong recrystallization cube texture in heavily rolled Ni–9.3 at % W has been studied. During the cold rolling (also known as recovery-rolling) process the deformation texture of Ni–9.3 at % W alloy (further notated as Ni9W) transforms to Copper-type rolling texture, and after annealing, a sharp cube texture is generated. It is remarkably strong recrystallization cube texture, as high as 93 vol %, in metallic materials with low stacking fault energy. The formation mechanism of the cube texture is adopted for the rapid recovery of cube nuclei at the early stage of recrystallization as well as fast migration rate of high angle boundaries between cube grains and deformed microstructure at high temperature. Considering the cold rolling texture of Ni9W, oriented nucleation seems to play more important role in the cube texture formation process. In this article, the relationship between the deformation texture and recrystallization cube texture is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Goyal, R. Feenstra, M. Paranthaman, J. R. Thompson, B. Y. Kang, C. Cantoni, D. F. Lee, F. A. List, P. M. Martin, and E. Lara-Curzio, “Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications,” Phys. C 382, 251–262 (2002).CrossRef A. Goyal, R. Feenstra, M. Paranthaman, J. R. Thompson, B. Y. Kang, C. Cantoni, D. F. Lee, F. A. List, P. M. Martin, and E. Lara-Curzio, “Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications,” Phys. C 382, 251–262 (2002).CrossRef
2.
go back to reference L. Ma, H. L. Suo, Y. Zhao, A. C. Wulff, Y. R. Liang, and J. C. Grivel, “Study on Fabrication of Ni–5 at % W Tapes for Coated Conductors from Cylinder Ingots,” IEEE Trans. Appl. Supercond. 25, 1–5 (2015). L. Ma, H. L. Suo, Y. Zhao, A. C. Wulff, Y. R. Liang, and J. C. Grivel, “Study on Fabrication of Ni–5 at % W Tapes for Coated Conductors from Cylinder Ingots,” IEEE Trans. Appl. Supercond. 25, 1–5 (2015).
3.
go back to reference A. A. Nikonov, “A study of the magnetoelastic effect of metal textured Ni–5 at % W tapes,” Phys. Met. Metallogr. 119, 6–17 (2018).CrossRef A. A. Nikonov, “A study of the magnetoelastic effect of metal textured Ni–5 at % W tapes,” Phys. Met. Metallogr. 119, 6–17 (2018).CrossRef
4.
go back to reference Y. Zhao, H. L. Suo, Y. H. Zhu, J. C. Grivel, M. Gao, L. Ma, R. F. Fan, M. Liu, Y. Ji, and M. L. Zhou, “Study on the formation of cubic texture in Ni–7 at % W alloy substrates by powder metallurgy routes,” Acta Mater. 57, 773–781 (2009).CrossRef Y. Zhao, H. L. Suo, Y. H. Zhu, J. C. Grivel, M. Gao, L. Ma, R. F. Fan, M. Liu, Y. Ji, and M. L. Zhou, “Study on the formation of cubic texture in Ni–7 at % W alloy substrates by powder metallurgy routes,” Acta Mater. 57, 773–781 (2009).CrossRef
5.
go back to reference J. Eickemeyer, R. Hühne, A. Güth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfel, “Textured Ni–9.0 at % W substrate tapes for YBCO-coated conductors,” Supercond. Sci. Technol. 23, 085012 (2010).CrossRef J. Eickemeyer, R. Hühne, A. Güth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfel, “Textured Ni–9.0 at % W substrate tapes for YBCO-coated conductors,” Supercond. Sci. Technol. 23, 085012 (2010).CrossRef
6.
go back to reference J. N. Liu, W. Liu, G. Y. Tang, and R. F. Zhu, “Fabrication of textured Ni–9.3 at % W substrate by electropulsing intermediate annealing method,” Phys. C 497, 119–122 (2014).CrossRef J. N. Liu, W. Liu, G. Y. Tang, and R. F. Zhu, “Fabrication of textured Ni–9.3 at % W substrate by electropulsing intermediate annealing method,” Phys. C 497, 119–122 (2014).CrossRef
7.
go back to reference M. Gao, H. L. Suo, Y. Zhao, J. C. Grivel, Y. L. Cheng, L. Ma, R. Wang, P. K. Gao, J. H. Wang, and M. Liu, “Characterization and properties of an advanced composite substrate for YBCO-coated conductors,” Acta Mater. 58, 1299–1308 (2010).CrossRef M. Gao, H. L. Suo, Y. Zhao, J. C. Grivel, Y. L. Cheng, L. Ma, R. Wang, P. K. Gao, J. H. Wang, and M. Liu, “Characterization and properties of an advanced composite substrate for YBCO-coated conductors,” Acta Mater. 58, 1299–1308 (2010).CrossRef
8.
go back to reference U. Gaitzsch, J. Eickemeyer, C. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz, “Paramagnetic substrates for thin film superconductors: Ni–W and Ni–W–Cr,” Scr. Mater. 62, 512–515 (2010).CrossRef U. Gaitzsch, J. Eickemeyer, C. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz, “Paramagnetic substrates for thin film superconductors: Ni–W and Ni–W–Cr,” Scr. Mater. 62, 512–515 (2010).CrossRef
9.
go back to reference R. D. Doherty, “Recrystallization and texture,” Prog. Mater Sci. 42, 39–58 (1997).CrossRef R. D. Doherty, “Recrystallization and texture,” Prog. Mater Sci. 42, 39–58 (1997).CrossRef
10.
go back to reference V. S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, and B. Holzapfel, “On the cold rolling textures in some fcc Ni–W alloys,” Mater. Sci. Eng., A 380, 30–33 (2004).CrossRef V. S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, and B. Holzapfel, “On the cold rolling textures in some fcc Ni–W alloys,” Mater. Sci. Eng., A 380, 30–33 (2004).CrossRef
11.
go back to reference R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, and W. E. King, “Current issues in recrystallization: a review,” Mater. Sci. Eng., A 238, 219–274 (1997).CrossRef R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, and W. E. King, “Current issues in recrystallization: a review,” Mater. Sci. Eng., A 238, 219–274 (1997).CrossRef
12.
go back to reference U. Schmidt and K. Lücke, “Recrystallization Textures of silver, copper and α-brasses with different zinc-contents as a function of the rolling temperature,” Texture Cryst. Solids. 3, 85 (1979).CrossRef U. Schmidt and K. Lücke, “Recrystallization Textures of silver, copper and α-brasses with different zinc-contents as a function of the rolling temperature,” Texture Cryst. Solids. 3, 85 (1979).CrossRef
13.
go back to reference V. S. Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel, “Recrystallization texture and magnetization behavior of some FCC Ni–W alloys,” Scr. Mater. 50, 953–957 (2004).CrossRef V. S. Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel, “Recrystallization texture and magnetization behavior of some FCC Ni–W alloys,” Scr. Mater. 50, 953–957 (2004).CrossRef
14.
go back to reference R. Hielscher and H. Schaeben, “A novel pole figure inversion method: specification of the MTEX algorithm,” J. Appl. Crystallogr. 41, 1024–1037 (2010).CrossRef R. Hielscher and H. Schaeben, “A novel pole figure inversion method: specification of the MTEX algorithm,” J. Appl. Crystallogr. 41, 1024–1037 (2010).CrossRef
15.
go back to reference T. Leffers and R. K. Ray, “The brass-type texture and its deviation from the copper-type texture,” Prog. Mater Sci. 54, 351–396 (2009).CrossRef T. Leffers and R. K. Ray, “The brass-type texture and its deviation from the copper-type texture,” Prog. Mater Sci. 54, 351–396 (2009).CrossRef
16.
go back to reference D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007).CrossRef D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007).CrossRef
17.
go back to reference H. Paul, J. H. Driver, C. Maurice, and A. Piątkowski, “Recrystallization mechanisms of low stacking fault energy metals as characterized on model silver single crystals,” Acta Mater. 55, 833–847 (2007).CrossRef H. Paul, J. H. Driver, C. Maurice, and A. Piątkowski, “Recrystallization mechanisms of low stacking fault energy metals as characterized on model silver single crystals,” Acta Mater. 55, 833–847 (2007).CrossRef
18.
go back to reference H. Tian, Y. Wang, L. Ma, M. Liu, and H. L. Suo, “Evolutions of the texture and microstructure of a heavily cold-rolled Ni9W alloy during recrystallization,” J. Mater. Res. 31, 2438–2444 (2016).CrossRef H. Tian, Y. Wang, L. Ma, M. Liu, and H. L. Suo, “Evolutions of the texture and microstructure of a heavily cold-rolled Ni9W alloy during recrystallization,” J. Mater. Res. 31, 2438–2444 (2016).CrossRef
19.
go back to reference P. P. Bhattacharjee, R. K. Ray, and N. Tsuji, “Cold rolling and recrystallization textures of a Ni–5 at % W alloy,” Acta Mater. 57, 2166–2179 (2009).CrossRef P. P. Bhattacharjee, R. K. Ray, and N. Tsuji, “Cold rolling and recrystallization textures of a Ni–5 at % W alloy,” Acta Mater. 57, 2166–2179 (2009).CrossRef
20.
go back to reference A. A. Ridha and W. B. Hutchinson, “Recrystallization mechanisms and the origin of cube texture in copper,” Acta Metall. 30, 1929–1939 (1982).CrossRef A. A. Ridha and W. B. Hutchinson, “Recrystallization mechanisms and the origin of cube texture in copper,” Acta Metall. 30, 1929–1939 (1982).CrossRef
21.
go back to reference D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, N. I. Vinogradova, and V. A. Sazonova, “Effect of recrystallization annealing on the formation of a perfect cube texture in fcc nickel Alloys,” Phys. Met. Metallogr. 111, 601–611 (2011).CrossRef D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, N. I. Vinogradova, and V. A. Sazonova, “Effect of recrystallization annealing on the formation of a perfect cube texture in fcc nickel Alloys,” Phys. Met. Metallogr. 111, 601–611 (2011).CrossRef
22.
go back to reference R. K. Ray, W. B. Hutchinson, and B. J. Duggan, “A study of the nucleation of recrystallization using HVEM,” Acta Metall. 23, 831–840 (1975).CrossRef R. K. Ray, W. B. Hutchinson, and B. J. Duggan, “A study of the nucleation of recrystallization using HVEM,” Acta Metall. 23, 831–840 (1975).CrossRef
23.
go back to reference H. J. Bunge and U. Köhler, “Modeling primary recrystallization in fcc and bcc metals by oriented nucleation and growth with the statistical compromise model,” Textures Microstruct. 28, 3–4 (1997). H. J. Bunge and U. Köhler, “Modeling primary recrystallization in fcc and bcc metals by oriented nucleation and growth with the statistical compromise model,” Textures Microstruct. 28, 3–4 (1997).
24.
go back to reference G. Gottstein, “Grain boundary migration in metals,” in Thermodynamics, Kinetics, Applications, Second Edition (CRC, 2009). G. Gottstein, “Grain boundary migration in metals,” in Thermodynamics, Kinetics, Applications, Second Edition (CRC, 2009).
25.
go back to reference J. Hjelen, R. Ørsund, and E. Nes, “On the origin of recrystallization textures in aluminum,” Acta Metall. Mater. 39, 1377–1404 (1991).CrossRef J. Hjelen, R. Ørsund, and E. Nes, “On the origin of recrystallization textures in aluminum,” Acta Metall. Mater. 39, 1377–1404 (1991).CrossRef
26.
go back to reference I. Samajdar and R. D. Doherty, “Role of S[(123)〈634〉] orientations in the preferred nucleation of cube grains in recrystallization of FCC metals,” Scr. Metall. Mater. 32, 845–850 (1995).CrossRef I. Samajdar and R. D. Doherty, “Role of S[(123)〈634〉] orientations in the preferred nucleation of cube grains in recrystallization of FCC metals,” Scr. Metall. Mater. 32, 845–850 (1995).CrossRef
27.
go back to reference B. J. Duggan, K. Lücke, G. Köhlhoff, and C. S. Lee, “On the origin of cube texture in copper,” Acta Metall. Mater. 41, 1921–1927 (1993).CrossRef B. J. Duggan, K. Lücke, G. Köhlhoff, and C. S. Lee, “On the origin of cube texture in copper,” Acta Metall. Mater. 41, 1921–1927 (1993).CrossRef
28.
go back to reference K. G. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton, and P. M. Derlet, “Computing the mobility of grain boundaries,” Nat. Mater. 5, 124–127 (2006).CrossRef K. G. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton, and P. M. Derlet, “Computing the mobility of grain boundaries,” Nat. Mater. 5, 124–127 (2006).CrossRef
29.
go back to reference A. L. Etter, M. H. Mathon, T. Baudin, V. Branger, and R. Penelle, “Influence of the cold rolled reduction on the stored energy and the recrystallization texture in a Fe–53% Ni alloy,” Scr. Mater. 46, 311–317 (2002).CrossRef A. L. Etter, M. H. Mathon, T. Baudin, V. Branger, and R. Penelle, “Influence of the cold rolled reduction on the stored energy and the recrystallization texture in a Fe–53% Ni alloy,” Scr. Mater. 46, 311–317 (2002).CrossRef
30.
go back to reference S. Zaefferer, T. Baudin, and R. Penelle, “A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe–36% Ni alloys,” Acta Mater. 49, 1105–1122 (2001).CrossRef S. Zaefferer, T. Baudin, and R. Penelle, “A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe–36% Ni alloys,” Acta Mater. 49, 1105–1122 (2001).CrossRef
31.
go back to reference F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Amsterdam, Elsevier, 1995), pp. 489–497. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Amsterdam, Elsevier, 1995), pp. 489–497.
32.
go back to reference Y. B. Zhang, A. Godfrey, Q. Liu, and W. Liu, “Analysis of the growth of individual grains during recrystallization in pure nickel,” Acta Mater. 57, 2631–2639 (2009).CrossRef Y. B. Zhang, A. Godfrey, Q. Liu, and W. Liu, “Analysis of the growth of individual grains during recrystallization in pure nickel,” Acta Mater. 57, 2631–2639 (2009).CrossRef
Metadata
Title
Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at % W
Authors
Y. T. Ji
H. L. Suo
L. Ma
Z. Wang
D. Yu
K. Shaheen
J. Cui
J. Liu
M. M. Gao
Publication date
01-03-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20020180

Other articles of this Issue 3/2020

Physics of Metals and Metallography 3/2020 Go to the issue