Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Fourier Analysis of Periodic Weakly Stationary Processes

Author : Toru Maruyama

Published in: Fourier Analysis of Economic Phenomena

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the decade around 1930, the world economy was thrown into a serious depression that nobody had previously experienced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
R. Frisch [6] also deserves special attention.
 
2
See Maruyama [22] for the outline of the theories of business fluctuations. See also Samuelson [24, 25], Hicks [9], Kaldor [11], R. Frisch [6], Keynes [18], Slutsky [2830].
 
3
Kawata [12, 13], Maruyama [20] and Wold [31] are classical works on Fourier analysis of stationary stochastic processes, which provided me with all the basic mathematical background. Among more recent literature, I wish to mention Brémaud [1]. Granger and Newbold [7] Chap. 2, Hamilton [8] Chap. 3 and Sargent [26] Chap. XI are textbooks written from the standpoint of economics.
 
4
See Kawata [17] pp. 5–7, for the proof. Loève [19] pp. 92–94 and Dudley [5] pp. 346–349 are also suggestive.
 
5
That is, both the real and imaginary parts are rationals.
 
6
We should use distinct notations for one-variable function ρ(u) and two variable function ρ(s, t). However, we use the same notation because there seems no possibility of confusion. ρ(u) is also called the autocovariance and ρ(u)∕ρ(0) is called the autocorrelation of the process.
 
7
In this evaluation, we are examining the situation where the upper limits (q, q′) of the sums tend to , and the lower limits (p, p′) tend to −. So, without loss of generality, we may assume \({p', p<0,\; 0\leqq q, q'}\). There are various cases other than p′< p and q < q′. However, we can treat them in the same manner.
 
8
It is known that the right-hand side converges strongly. Hence we can specify the upper and lower limits of \(\sum \) as p and −p. l.i.m. denotes the limit in \(\mathfrak {L}^2\).
 
9
Crum [3].
 
10
It is well-known that
$$\displaystyle \begin{aligned} |\alpha -\beta|{}^2 \leqq 2(|\alpha |{}^2+|\beta|{}^2) \end{aligned}$$
for any \(\alpha , \beta \in \mathbb {C}\), in general. Specifying α and β as
$$\displaystyle \begin{aligned} \alpha =e^{-t^2}X(t,\omega),\quad \beta=e^{-(t+u)^2}X(t+u,\omega), \end{aligned}$$
we obtain the desired result.
 
11
The graph of the function te −2tu is depicted as follows according to the sign of u.
https://static-content.springer.com/image/chp%3A10.1007%2F978-981-13-2730-8_8/MediaObjects/417569_1_En_8_Figa_HTML.gif
(a)
In the case of u > 0, e −2tu monotonically converges to 1 at each t as u → 0. To say more in detail, it is monotonically increasing in the region t > 0, and decreasing in the region t < 0. Since we may assume \(0<u\leqq 1\), without loss of generality, \(e^{-2t^2-2tu}\leqq e^{-2t^2-2t}\) in the region t < 0. Hence applying the dominated convergence theorem and the monotone convergence theorem to the first and the second terms, respectively, of the right-hand side of the integral
$$\displaystyle \begin{aligned} \int_{\mathbb{R}} e^{-2t^2-2tu}dt = \int_{-\infty}^0 e^{-2t^2} e^{-2tu}dt + \int_0^\infty e^{-2t^2} e^{-2tu}dt, \end{aligned}$$
we obtain
$$\displaystyle \begin{aligned} \int_{\mathbb{R}} e^{-2t^2-2tu}dt\rightarrow \int_{\mathbb{R}} e^{-2t^2}dt \end{aligned}$$
(†)
as u → 0 (u > 0).
 
(b)
A similar argument applies to the case of u < 0, u → 0.
 
In general, assume that a numerical sequence {u n} (u n may either be positive or negative) converges to 0. Suppose
$$\displaystyle \begin{aligned} \int_{\mathbb{R}}e^{-2t^2}e^{-2tu_n}dt \nrightarrow \int_{\mathbb{R}}e^{-2t^2}dt. \end{aligned} $$
Then for sufficiently small ε > 0, there exists a subsequence \(\{u_{n'}\}\) of {u n} such that
$$\displaystyle \begin{aligned} \bigg|\int_{\mathbb{R}}e^{-2t^2-2tu_{n'}}dt-\int_{\mathbb{R}}e^{-2t^2}dt \bigg|\geqq \varepsilon \quad \text{for all}\; n'. \end{aligned} $$
If we choose a further subsequence \(\{u_{n''}\}\) of \(\{u_{n'}\}\) of the type (a) or (b), then we must have
$$\displaystyle \begin{aligned} \bigg|\int_{\mathbb{R}}e^{-2t^2-2tu_{n''}}dt-\int_{\mathbb{R}}e^{-2t^2}dt\bigg|\geqq \varepsilon \quad \text{for all}\; n''. \end{aligned} $$
A contradiction occurs.
 
12
Kawata [16], pp. 150–151.
 
13
X(t, ω) is strongly continuous by Theorem 8.5.
 
14
Let Φ 1, Φ 2, ⋯ be a sequence of Borel probability measures. Then there exist a certain probability space \((\varOmega , \mathbb {E}, P)\) and mutually independent random variables, the distributions of which are Φ 1, Φ 2, ⋯(Itô [10], p. 68).
 
15
Let X 1, X 2, ⋯ be independent real random variables and \(g_1, g_2, \cdots : \mathbb {R}\rightarrow \mathbb {C}\) Borel measurable. Then Y 1 = g 1(X 1), Y 2 = g 2(X 2), ⋯ are independent random variables (Itô [10], p. 66). Based upon this result, Y (ω) and e iZ(ω)t in the text are independent.
 
16
If we denote by \(\hat {\nu }\) the Fourier transform of ν, we have
$$\displaystyle \begin{aligned} |\hat{\nu}(t+h)-\hat{\nu}(t)| &=\frac{1}{\sqrt{2\pi}}\bigg|\int_{\mathbb{R}}(e^{-i(t+h)x}-e^{-itx})d\nu(x)\bigg| \\ &\leqq \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}|e^{-ihx}-1|d\nu(x) \\ &\rightarrow 0\quad \text{as}\quad h\rightarrow 0, \end{aligned} $$
by the dominated convergence theorem.
 
17
Hence if the right-hand side is a finite sum,
$$\displaystyle \begin{aligned}\xi\bigg(\bigcup_{j=1}^p S_j, \omega\bigg)=\sum_{j=1}^p \xi (S_j, \omega)\;\; \text{a.e.}\end{aligned}$$
 
18
According to Itô [10] p. 255, Kolmogorov’s important article was published in C.R. Acad. Sci. URSS, 26 (1940), 115–118. However, I have never read it, very regrettably. That is why I dropped it from the reference list.
 
19
See Maruyama [21] pp. 74–76.
 
20
\(\nu _\xi (S)=\|\xi (S,\omega )\|{ }_2^2\) is a special case of Theorem 7.​8(i) (p. 177).
 
21
The last equality is verified as follows. We consider a simple function \(\varphi (\lambda )=\displaystyle \sum _{i=1}^n \alpha _i \chi _{S_i}(\lambda )\quad (S_i\cap S_j=\emptyset \quad \text{if}\quad i\neq j)\).
$$\displaystyle \begin{aligned} \int_{\mathbb{R}}\varphi(\lambda)dE(\lambda)X(0,\omega)=\sum_{i=1}^n\alpha_i E(S_i)X(0,\omega) =\sum_{i=1}^n \alpha_i \xi(S_i,\omega)=\int_{\mathbb{R}} \varphi(\lambda)\xi(d\lambda,\omega). \end{aligned}$$
The integration of e iλt is a limit of such integrations of simple functions.
 
22
This problem was studied by Doob [4] Chap. X, §8, Chap. XI, §8 and Kawata [17] pp. 69–73. I try to clarify the subtle details embedded in their works. cf. Maruyama [23].
 
23
See Doob [4] Chap. II, §2.
 
24
The convergence of the series in (8.45) is in \(\mathfrak {L}^2(\mathbb {T},\mathbb {C})\). However, the series is, actually, convergent a.e. and is equal to α(λ) according to Carleson’s theorem. cf. Carleson [2].
 
25
In the case \(\mathbb {T}_0=\emptyset \) (and so α(λ) never vanishes), the discussion becomes much easier, since it is enough to define γ(S, ω) simply by
$$\displaystyle \begin{aligned} \gamma(S,\omega)=\int_S\frac{1}{\alpha(\lambda)}\xi(d\lambda,\omega) \end{aligned}$$
for any \(S\in \mathbb {B}(\mathbb {T})\). Clearly, ν γ(S) = m(S).
 
26
$$\displaystyle \begin{aligned} \mathbb{E}_{(\omega,\omega')}&|\gamma'(S,\omega,\omega')|{}^2 \\ =&\; \mathbb{E}_\omega\Big|\int_S\alpha_1(\lambda)\xi(d\lambda,\omega)\Big|{}^2 \\ &+\mathbb{E}_{\omega'}\Big|\int_S\alpha_2(\lambda)\eta(d\lambda,\omega')\Big|{}^2 \\ &+2{\mathbb Re}\mathbb{E}_{(\omega,\omega')}\int_S\alpha_1(\lambda)\xi(d\lambda,\omega)1(\omega')\int_S \overline{\alpha_2(\lambda)\eta(d\lambda,\omega')1(\omega)} \\ =&\int_S|\alpha_1(\lambda)|{}^2\nu_\xi(d\lambda)+\int_S|\alpha_2(\lambda)|{}^2\nu_\eta(d\lambda) \\ &+2{\mathbb Re}\mathbb{E}_{(\omega,\omega')}\int_{S\cap\mathbb{T}_+}\alpha_1(\lambda)\xi(d\lambda,\omega) \int_{S\cap\mathbb{T}_0}\overline{\alpha_2(\lambda)\eta(d\lambda,\omega')} \\ =&\; m(S\cap\mathbb{T}_+)+m(S\cap\mathbb{T}_0)+0. \end{aligned} $$
 
27
$$\displaystyle \begin{aligned} \int_{\mathbb{T}}&e^{-in\lambda}\alpha(\lambda)\gamma(d\lambda,\omega) \\ &=\int_{\mathbb{T}_+}e^{-in\lambda}\alpha(\lambda)\cdot\frac{1}{\alpha(\lambda)}\xi(d\lambda,\omega) +\mathbb{E}_{\omega'}\int_{\mathbb{T}_0}e^{-in\lambda}\alpha(\lambda)\cdot\alpha_2(\lambda)\eta(d\lambda,\omega') \\ &=\int_{\mathbb{T}_+}e^{-in\lambda}\xi(d\lambda,\omega)=\int_{\mathbb{T}}e^{-in\lambda}\xi(d\lambda,\omega). \end{aligned} $$
The final equality is justified by
$$\displaystyle \begin{aligned} \mathbb{E}_\omega&\Big|\int_{\mathbb{T}_0}e^{-in\lambda}\xi(d\lambda,\omega)\Big|{}^2=\int_{\mathbb{T}_0}\nu_\xi(d\lambda)\quad \text{(by D-K formula)} \\ &=\int_{\mathbb{T}_0}p(\lambda)dm=0\quad (p(\lambda)=0\; \text{on}\; \mathbb{T}_0). \end{aligned} $$
 
28
Since Z n(ω) is a white noise, the covariance is given by
$$\displaystyle \begin{aligned}\mathbb{E}Z_{n+u}(\omega)\overline{Z_n(\omega)}= \begin{cases} 1\quad \text{if} \quad u=0,\\ 0\quad \text{if} \quad u\neq0. \end{cases} \end{aligned}$$
 
29
The convergence of \((1/\sqrt {2\pi })\displaystyle \sum _{k=-p}^qc_ke^{-ik\lambda }\) to C(λ) also holds good “almost everywhere” thanks to the Carleson theorem. Hence c k is the Fourier coefficient of C(λ) corresponding to \((1/\sqrt {2\pi })e^{-ik\lambda }\).
 
30
The orthogonality, for instance, can be verified as follows. If S and \(S'\in \mathbb {B}(\mathbb {T})\) are disjoint,
$$\displaystyle \begin{aligned} \mathbb{E}\theta(S,\omega)\overline{\theta(S',\omega)} &=\mathbb{E}\int_{\mathbb{T}}C(\lambda)\chi_S(\lambda)\xi(d\lambda,\omega) \int_{\mathbb{T}}\overline{C(\lambda)\chi_{S'}(\lambda)\xi(d\lambda,\omega)} \\ &=\int_{\mathbb{T}}|C(\lambda)|{}^2\chi_S(\lambda)\chi_{S'}(\lambda)d\nu_\xi=0\quad (\text{by D-K formula}). \end{aligned} $$
 
31
We can also establish
$$\displaystyle \begin{aligned} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f(\lambda)g(\lambda)e^{-iz\lambda}dm(\lambda) =\frac{1}{\sqrt{2\pi}}(\mathbb{F}_2f\ast \mathbb{F}_2g)(z).\end{aligned}$$
(cf. Kawata [15] pp. 282–283.)
 
32
The third line of (8.56)
$$\displaystyle \begin{aligned} &=\frac{1}{\sqrt{2\pi}}\Big\{ \int_{\mathbb{R}_+} \alpha(\lambda-(t+u))\alpha(\lambda-t)dm(\lambda) +\int_{\mathbb{R}_0}\underbrace{\alpha(\lambda-(t+u))\alpha(\lambda-t)}_{(\dagger)}d\nu_\gamma\Big\} \\ &=\frac{1}{\sqrt{2\pi}}\Big\{\int_{\mathbb{R}}(\dagger)dm(\lambda)-\int_{\mathbb{R}_0}(\dagger)dm(\lambda) +\int_{\mathbb{R}_0}(\dagger)d\nu_\gamma\Big\}\\ &=\frac{1}{\sqrt{2\pi}}\Big\{ \int_{\mathbb{R}}(\dagger)dm(\lambda) -\int_{\begin{subarray}{l}\lambda \in \mathbb{R}_0 \\ \lambda-t\in \mathbb{R}_+ \end{subarray}} (\dagger)dm(\lambda) -\int_{\begin{subarray}{l}\lambda \in \mathbb{R}_0 \\ \lambda-t\in \mathbb{R}_0 \end{subarray}} (\dagger)dm(\lambda)\\ &\hspace{25mm}+\int_{\begin{subarray}{l}\lambda\in \mathbb{R}_0 \\ \lambda-t\in \mathbb{R}_+ \end{subarray}} (\dagger)d\nu_\gamma(\lambda) +\int_{\begin{subarray}{l}\lambda\in \mathbb{R}_0 \\ \lambda-t\in \mathbb{R}_0 \end{subarray}} (\dagger)d\nu_\gamma(\lambda)\Big\}\\ &=\frac{1}{\sqrt{2\pi}}\Big\{\int_{\mathbb{R}}(\dagger)dm(\lambda) -\int_{(\mathbb{R}_0-t)\cap\mathbb{R}_+} \alpha(\lambda'-u)\alpha(\lambda')dm(\lambda') \\ &\hspace{25mm} +\int_{(\mathbb{R}_0-t)\cap\mathbb{R}_+} \alpha(\lambda'-u) \alpha(\lambda')d\nu_\gamma(\lambda')\Big\}. \end{aligned} $$
The last two terms cancel out. So we obtain (8.56).
 
33
This section was added according to Professor S. Kusuoka’s suggestion. It is not included in the Japanese edition of this monograph.
 
34
For backward operators, see Granger and Newbold [7] Chap. 1.
 
35
Loève [19] p. 11.
 
36
Sargent [26] Chap. 11 and Shinkai [27] Chaps.7–8 are very suggestive.
 
Literature
1.
go back to reference Brémaud, P.: Fourier Analysis and Stochastic Processes. Springer, Cham (2014)CrossRef Brémaud, P.: Fourier Analysis and Stochastic Processes. Springer, Cham (2014)CrossRef
2.
4.
5.
go back to reference Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988) Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988)
6.
go back to reference Frisch, R.: Propagation problems and inpulse problems in dynamic economics. In: Economic Essays in Honor of Gustav Cassel. Allen and Unwin, London (1933) Frisch, R.: Propagation problems and inpulse problems in dynamic economics. In: Economic Essays in Honor of Gustav Cassel. Allen and Unwin, London (1933)
7.
go back to reference Granger, C.W.J., Newbold., P.: Forecasting Economic Time Series, 2nd edn. Academic, Orlando (1986)CrossRef Granger, C.W.J., Newbold., P.: Forecasting Economic Time Series, 2nd edn. Academic, Orlando (1986)CrossRef
8.
go back to reference Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)MATH Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)MATH
9.
go back to reference Hicks, J.R.: A Contribution to the Theory of the Trade Cycle. Oxford University Press, London (1950) Hicks, J.R.: A Contribution to the Theory of the Trade Cycle. Oxford University Press, London (1950)
10.
go back to reference Itô, K.: Kakuritsu-ron (Probability Theory). Iwanami Shoten, Tokyo (1953) (Originally published in Japanese) Itô, K.: Kakuritsu-ron (Probability Theory). Iwanami Shoten, Tokyo (1953) (Originally published in Japanese)
11.
12.
go back to reference Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics), I, II. Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese) Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics), I, II. Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese)
13.
go back to reference Kawata, T.: Fourier Henkan to Laplace Henkan (Fourier and Laplace Transforms). Iwanami Shoten, Tokyo (1957) (Originally published in Japanese) Kawata, T.: Fourier Henkan to Laplace Henkan (Fourier and Laplace Transforms). Iwanami Shoten, Tokyo (1957) (Originally published in Japanese)
14.
go back to reference Kawata, T.: On the Fourier series of a stationary stochastic process, I, II. Z. Wahrsch. Verw. Gebiete 6, 224–245 (1966); 13, 25–38 (1969) Kawata, T.: On the Fourier series of a stationary stochastic process, I, II. Z. Wahrsch. Verw. Gebiete 6, 224–245 (1966); 13, 25–38 (1969)
15.
go back to reference Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese) Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese)
16.
go back to reference Kawata, T.: Fourier Kaiseki to Tokei (Fourier Analysis and Statistics). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese) Kawata, T.: Fourier Kaiseki to Tokei (Fourier Analysis and Statistics). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese)
17.
go back to reference Kawata, T.: Teijyo Kakuritsu Katei (Stationary Stochastic Processes). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese) Kawata, T.: Teijyo Kakuritsu Katei (Stationary Stochastic Processes). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese)
18.
go back to reference Keynes, J.M.: The General Theory of Employment, Interest and Money. Macmillan, London (1936) Keynes, J.M.: The General Theory of Employment, Interest and Money. Macmillan, London (1936)
19.
go back to reference Loève, M.: Probability Theory, 3rd edn. van Nostrand, Princeton (1963)MATH Loève, M.: Probability Theory, 3rd edn. van Nostrand, Princeton (1963)MATH
20.
go back to reference Maruyama, G.: Harmonic Analysis of Stationary Stochastic Processes. Mem. Fac. Sci. Kyushu Univ. Ser. A, 4, 45–106 (1949)MathSciNetMATH Maruyama, G.: Harmonic Analysis of Stationary Stochastic Processes. Mem. Fac. Sci. Kyushu Univ. Ser. A, 4, 45–106 (1949)MathSciNetMATH
21.
go back to reference Maruyama, T.: Suri-keizaigaku no Hoho (Methods in Mathematical Economics). Sobunsha, Tokyo (1995) (Originally published in Japanese) Maruyama, T.: Suri-keizaigaku no Hoho (Methods in Mathematical Economics). Sobunsha, Tokyo (1995) (Originally published in Japanese)
22.
go back to reference Maruyama, T.: Shinko Keizai Genron (Principles of Economics), 3rd edn. Iwanami Shoten, Tokyo (2013) (Originally published in Japanese) Maruyama, T.: Shinko Keizai Genron (Principles of Economics), 3rd edn. Iwanami Shoten, Tokyo (2013) (Originally published in Japanese)
23.
go back to reference Maruyama, T.: Fourier Analysis of Periodic Weakly Stationary Processes. A Note on Slutsky’s Observation. Adv. Math. Eco. 20, 151–180 (2016)MATH Maruyama, T.: Fourier Analysis of Periodic Weakly Stationary Processes. A Note on Slutsky’s Observation. Adv. Math. Eco. 20, 151–180 (2016)MATH
24.
go back to reference Samuelson, P.A.: Interaction between the multiplier analysis and the principle of acceleration. Rev. Econ. Stud. 21, 75–78 (1939) Samuelson, P.A.: Interaction between the multiplier analysis and the principle of acceleration. Rev. Econ. Stud. 21, 75–78 (1939)
25.
go back to reference Samuelson, P.A.: A synthesis of the principle of acceleration and the multiplier. J. Polit. Econ. 47, 786–797 (1939)CrossRef Samuelson, P.A.: A synthesis of the principle of acceleration and the multiplier. J. Polit. Econ. 47, 786–797 (1939)CrossRef
26.
go back to reference Sargent, T.J.: Macroeconomic Theory. Academic, New York (1979)MATH Sargent, T.J.: Macroeconomic Theory. Academic, New York (1979)MATH
27.
go back to reference Shinkai, Y.: Keizai-hendo no Riron (Theory of Economic Fluctuations). Iwanami Shoten, Tokyo (1967) (Originally published in Japanese) Shinkai, Y.: Keizai-hendo no Riron (Theory of Economic Fluctuations). Iwanami Shoten, Tokyo (1967) (Originally published in Japanese)
28.
go back to reference Slutsky, E.: Alcune proposizioni sulla teoria delle funzioni aleatorie. Giorn. Inst. Ital. degli Attuari 8, 193–199 (1937) Slutsky, E.: Alcune proposizioni sulla teoria delle funzioni aleatorie. Giorn. Inst. Ital. degli Attuari 8, 193–199 (1937)
29.
go back to reference Slutsky, E.: The summation of random causes as the source of cyclic processes. Econometrica 5, 105–146 (1937)CrossRef Slutsky, E.: The summation of random causes as the source of cyclic processes. Econometrica 5, 105–146 (1937)CrossRef
30.
go back to reference Slutsky, E.: Sur les fonctions aléatoires presque-periodiques et sur la décomposition des fonctions aléatoires stationnaires en composantes. Actualités Sci. Ind. 738, 38–55 (1938)MATH Slutsky, E.: Sur les fonctions aléatoires presque-periodiques et sur la décomposition des fonctions aléatoires stationnaires en composantes. Actualités Sci. Ind. 738, 38–55 (1938)MATH
31.
go back to reference Wold, H.: A Study in the Analysis of Stationary Time Series, 2nd edn. Almquist and Wicksell, Uppsala (1953)MATH Wold, H.: A Study in the Analysis of Stationary Time Series, 2nd edn. Almquist and Wicksell, Uppsala (1953)MATH
Metadata
Title
Fourier Analysis of Periodic Weakly Stationary Processes
Author
Toru Maruyama
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2730-8_8

Premium Partner