Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Fourier Series on Hilbert Spaces

Author : Toru Maruyama

Published in: Fourier Analysis of Economic Phenomena

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let e 1, e 2, …, e l be the standard basis of an l-dimensional Euclidean space consisting of l unit vectors. Then any vector x can be expressed as
$$\displaystyle x=\sum _{i=1}^l c_ie_i $$
and such an expression is determined uniquely. The coefficients c 1, c 2, ⋯, c l are computed as c i = 〈x, e i〉 (inner product).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A systematic theory of functional analysis in the framework of Hilbert spaces is discussed in many textbooks in this discipline. For instance, Halmos [4] and Schwartz [8] are very well-written classics. See also Lax [6] Chap. 6 and Maruyama [7] Chap. 3.
 
2
In the case of a real vector space \(\mathfrak {H}\), an inner product is a real-valued function \(\langle \cdot, \cdot \rangle : \mathfrak {H}\times \mathfrak {H}\rightarrow \mathbb {R}\) such that (i)–(iv) are satisfied. Of course, (ii) should be rewritten as 〈x, y〉 = 〈y, x〉.
 
3
See Folland [3] Chap. 6, Terasawa [10] pp. 145–149, pp. 414–416, Yosida [11] Chap. 1, §3 and Chap. 2, §2.
 
4
The term of the highest degree = (1∕2n n!){(2n)(2n − 1)⋯(n + 1)}x n.
 
5
The first process of integration by parts is as follows:
$$\displaystyle \begin{aligned}f(x)\frac{d^{n-1}}{dx^{n-1}}(x^2 -1)^n \Big|{}_{-1}^1-\int_{-1}^1 f'(x)\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n dx \end{aligned}$$
$$\displaystyle \begin{aligned}=-\int_{-1}^1f'(x)\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^{n}dx.\end{aligned}$$
 
6
We denote by \(\mathbb {C}_+\) the complex half-plane \(\mathbb {R}ez>0\). The function \((\varGamma : \mathbb {C}_+\rightarrow \mathbb {C})\) defined by
$$\displaystyle \begin{aligned} \varGamma(s)=\int_0^\infty x^{s-1}e^{-x}dx \end{aligned} $$
(t)
is called the gamma function. Γ is analytic on \(\mathbb {C}_+\). Sometimes the domain of Γ is taken to be (0, ) rather than \(\mathbb {C}_+\). In the text above, we also follow this policy. The function \(B: \mathbb {C}_+\times \mathbb {C}_+\rightarrow \mathbb {C}\) defined by
$$\displaystyle \begin{aligned} B(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}dx \end{aligned}$$
is called the beta function. (Note that the integral is convergent.) The following formulas hold good (cf. Cartan [1] Chap. V, §3 and Takagi [9] Chap. 5, §68):
1∘
Γ(s + 1) = (s).
We also obtain Γ(n + 1) = n! for all \(n\in \mathbb {N}\) by induction.
 
2∘
B(p, q) = Γ(p)Γ(q)∕Γ(p + q).
 
3∘
\(\varGamma (s)\varGamma (1-s)=\pi /\sin \pi s.\)
If s = 1∕2, in particular, we have \(\varGamma (1/2)=\sqrt {\pi }\).
 
4∘
\(\varGamma \big (n+\frac {1}{\, 2\,}\big )=\frac {1}{\,2\,}\big (\frac {3}{\, 2\, }\big )\cdots \big (n-\frac {1}{\, 2\,}\big )\sqrt {\pi } \quad (n=0,1,2,\cdots ).\)
 
 
7
More rigorously, the Fourier coefficient corresponding to \((1/\sqrt {2\pi })e^{inx}\) is
$$\displaystyle \begin{aligned}\frac{1}{\sqrt{2\pi}}\int_{-\pi}^\pi f(x)e^{-inx}dx,\end{aligned}$$
and the Fourier series is
$$\displaystyle \begin{aligned}\sum_{n=-\infty}^\infty\frac{1}{\sqrt{2\pi}}\int_{-\pi}^\pi f(x)e^{-inx}dx\cdot\frac{1}{\sqrt{2\pi}} e^{inx}. \end{aligned}$$
 
8
See Folland [3] Chap. 6 and Kawata [5] pp. 33–36 for other orthonormal systems.
 
9
We acknowledge Yosida [12] p. 88 for the proof here.
 
10
The injectivity of T is also verified by Theorem 1.6 (ii).
 
Literature
1.
go back to reference Cartan, H.: Théorie élémentaires des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1961) (English edn.) Elementary Theory of Analytic Functions of One or Several Complex Variables. Addison Wesley, Reading (1963) Cartan, H.: Théorie élémentaires des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1961) (English edn.) Elementary Theory of Analytic Functions of One or Several Complex Variables. Addison Wesley, Reading (1963)
2.
go back to reference Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988) Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988)
3.
go back to reference Folland, G.B.: Fourier Analysis and its Applications. American Mathematical Society, Providence (1992) Folland, G.B.: Fourier Analysis and its Applications. American Mathematical Society, Providence (1992)
4.
go back to reference Halmos, P.R.: Introduction to a Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York (1951) Halmos, P.R.: Introduction to a Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York (1951)
5.
go back to reference Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese) Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese)
6.
go back to reference Lax, P.D.: Functional Analysis. Wiley, New York (2002) Lax, P.D.: Functional Analysis. Wiley, New York (2002)
7.
go back to reference Maruyama, T.: Kansu Kaisekigaku (Functional Analysis). Keio Tsushin, Tokyo (1980) (Originally published in Japanese) Maruyama, T.: Kansu Kaisekigaku (Functional Analysis). Keio Tsushin, Tokyo (1980) (Originally published in Japanese)
8.
go back to reference Schwartz, L.: Analyse hilbertienne. Hermann, Paris (1979) Schwartz, L.: Analyse hilbertienne. Hermann, Paris (1979)
9.
go back to reference Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese) Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese)
10.
go back to reference Terasawa, K.: Shizen Kagakusha no tame no Sugaku Gairon (Treatise on Mathematics for Natural Scientists). Iwanami Shoten, Tokyo (1954) (Originally published in Japanese) Terasawa, K.: Shizen Kagakusha no tame no Sugaku Gairon (Treatise on Mathematics for Natural Scientists). Iwanami Shoten, Tokyo (1954) (Originally published in Japanese)
11.
go back to reference Yosida, K.: Lectures on Differential and Integral Equations. Interscience, New York (1960) Yosida, K.: Lectures on Differential and Integral Equations. Interscience, New York (1960)
12.
Metadata
Title
Fourier Series on Hilbert Spaces
Author
Toru Maruyama
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2730-8_1

Premium Partner