Skip to main content
Top

2023 | OriginalPaper | Chapter

Fractal Convolution Bessel Sequences on Rectangle

Authors : R. Pasupathi, M. A. Navascués, A. K. B. Chand

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the intricate world of fractal geometry and its applications in modeling natural phenomena. It introduces the concept of Fractal Interpolation Functions (FIFs) and their advantages, such as self-similarity and non-integer dimensional approximations. The core of the chapter focuses on constructing fractal convolution Bessel sequences on a rectangle, leveraging the tensor product of Hilbert spaces and fractal functions. These sequences are shown to have superior flexibility and accuracy in approximating two-dimensional square-integrable maps. The chapter concludes by highlighting the practical implications of these fractal Bessel sequences in various fields, offering a cutting-edge tool for advanced mathematical modeling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Barnsley, M.F.: Fractals Everywhere. Academic, Boston (1988) Barnsley, M.F.: Fractals Everywhere. Academic, Boston (1988)
3.
go back to reference Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters Ltd, Wellesley (1993) Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters Ltd, Wellesley (1993)
4.
go back to reference Chand, A.K.B., Vijender, N.: A new class of fractal interpolation surfaces based on functional values. Fractals 24(1), 1650007, 1–17 (2016) Chand, A.K.B., Vijender, N.: A new class of fractal interpolation surfaces based on functional values. Fractals 24(1), 1650007, 1–17 (2016)
5.
go back to reference Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2014)CrossRefMATH Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2014)CrossRefMATH
6.
go back to reference Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53, 841–865 (2013)CrossRefMATH Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53, 841–865 (2013)CrossRefMATH
7.
go back to reference Christensen, O.: Frames and Bases: An Introductory Course. Birkhauser, Boston (2008) Christensen, O.: Frames and Bases: An Introductory Course. Birkhauser, Boston (2008)
8.
go back to reference Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995) Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
9.
10.
go back to reference Khosravi, A., Asgari, M.S.: Frames and bases in tensor product of Hilbert spaces. Int. Math. J. 4, 527–537 (2003)MATH Khosravi, A., Asgari, M.S.: Frames and bases in tensor product of Hilbert spaces. Int. Math. J. 4, 527–537 (2003)MATH
11.
go back to reference Kumagai, Y.: Fractal structure of financial high frequency data. Fractals 10(1), 13–18 (2002)CrossRef Kumagai, Y.: Fractal structure of financial high frequency data. Fractals 10(1), 13–18 (2002)CrossRef
12.
go back to reference Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982) Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)
13.
go back to reference Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press Inc, San Diego (1994) Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press Inc, San Diego (1994)
14.
go back to reference Massopust, P.R.: Interpolation and Approximation with Splines and Fractals. Oxford University Press, New York (2010) Massopust, P.R.: Interpolation and Approximation with Splines and Fractals. Oxford University Press, New York (2010)
15.
go back to reference Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences, U. IEEE Trans. Signal Process. 40, 1724–1734 (1992)CrossRefMATH Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences, U. IEEE Trans. Signal Process. 40, 1724–1734 (1992)CrossRefMATH
16.
go back to reference Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)CrossRefMATH Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)CrossRefMATH
17.
go back to reference Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100, 247–261 (2008)CrossRefMATH Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100, 247–261 (2008)CrossRefMATH
18.
go back to reference Navascués, M.A., Massopust, P.: Fractal convolution: a new operation between functions. Fract. Calc. Appl. Anal. 22(3), 619–643 (2019)CrossRefMATH Navascués, M.A., Massopust, P.: Fractal convolution: a new operation between functions. Fract. Calc. Appl. Anal. 22(3), 619–643 (2019)CrossRefMATH
19.
go back to reference Navascués, M.A., Mohapatra, R., Akhtar, M.N.: Fractal frames of functions on the rectangle. Fractal Fract. 42(5) (2021) Navascués, M.A., Mohapatra, R., Akhtar, M.N.: Fractal frames of functions on the rectangle. Fractal Fract. 42(5) (2021)
20.
go back to reference Navascués, M.A., Viswanathan, P., Mohapatra, R.: Convolved fractal bases and frames. Adv. Oper. Theorem 42(6) (2021) Navascués, M.A., Viswanathan, P., Mohapatra, R.: Convolved fractal bases and frames. Adv. Oper. Theorem 42(6) (2021)
21.
go back to reference Roy, A., Sujith, R.I.: Fractal dimension of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef Roy, A., Sujith, R.I.: Fractal dimension of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef
22.
go back to reference Singer, I.: Bases in Banach Spaces I. Springer, New York (1970) Singer, I.: Bases in Banach Spaces I. Springer, New York (1970)
23.
go back to reference Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)CrossRefMATH Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)CrossRefMATH
24.
go back to reference Viswanathan, P., Chand, A.K.B., Agarwal, R.P.: Preserving convexity through rational cubic spline fractal interpolation function. J. Comput. Appl. Math. 263, 262–276 (2014)CrossRefMATH Viswanathan, P., Chand, A.K.B., Agarwal, R.P.: Preserving convexity through rational cubic spline fractal interpolation function. J. Comput. Appl. Math. 263, 262–276 (2014)CrossRefMATH
25.
go back to reference Vrscay, E.R.: Iterated function systems: Theory, applications and the inverse problem. In: Proceedings of the NATO Advanced Study Institute on Fractal Geometry, Montreal, July 1989, Kluwer Academic Publishers (1990) Vrscay, E.R.: Iterated function systems: Theory, applications and the inverse problem. In: Proceedings of the NATO Advanced Study Institute on Fractal Geometry, Montreal, July 1989, Kluwer Academic Publishers (1990)
26.
go back to reference Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)CrossRefMATH Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)CrossRefMATH
Metadata
Title
Fractal Convolution Bessel Sequences on Rectangle
Authors
R. Pasupathi
M. A. Navascués
A. K. B. Chand
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_11

Premium Partners