Skip to main content
Top

2020 | OriginalPaper | Chapter

8. Fractal Dimension Based Damage Detection

Author : Ranjan Ganguli

Published in: Structural Health Monitoring

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a fractal dimension approach to damage detection in composite structures. This approach provides an alternative to the wavelet approach in the previous chapter and is model free. This means that the fractal approach can be used directly with measured data. We also use a static deflection profile in this chapter as a response variable. The deflection profile can be sensitive to local damage, as we shall show in this chapter. Matrix cracks are considered as a local damage and spatial variation in material properties is considered. Section 8.1 presents some background from the literature to motivate the use of fractal dimension measure in structural damage detection. Section 8.2 presents the definition of fractal dimension and an outline of the composite plate model with matrix cracks. Section 8.3 presents numerical results of composite plate static deflection and the effect of curvature, fractal dimension operator and the curvature of fractal dimension on the static deflection of a plate with a seeded local damage. Uncertainty in the material properties is introduced as a random field. Section 8.4 presents a summary of this chapter. This chapter is based on material in [1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Umesh, K., & Ganguli, R. (2014). Matrix crack detection in spatially random composite structures using fractal dimension. CMC-Computers Materials and Continua, 9063. Umesh, K., & Ganguli, R. (2014). Matrix crack detection in spatially random composite structures using fractal dimension. CMC-Computers Materials and Continua, 9063.
2.
go back to reference Hjelmstad, K. D., & Shin, S. (1997). Damage detection and assessment of structures from static response. Journal of Engineering Mechanics, 123(6), 568–576.CrossRef Hjelmstad, K. D., & Shin, S. (1997). Damage detection and assessment of structures from static response. Journal of Engineering Mechanics, 123(6), 568–576.CrossRef
3.
go back to reference Bakhtiari-Nejad, F., Rahai, A., & Esfandiari, A. (2005). A structural damage detection method using static noisy data. Engineering Structures, 27(12), 1784–1793.CrossRef Bakhtiari-Nejad, F., Rahai, A., & Esfandiari, A. (2005). A structural damage detection method using static noisy data. Engineering Structures, 27(12), 1784–1793.CrossRef
4.
go back to reference Caddemi, S., & Morassi, A. (2007). Crack detection in elastic beams by static measurements. International Journal of Solids and Structures, 44, 5301–5315.MATHCrossRef Caddemi, S., & Morassi, A. (2007). Crack detection in elastic beams by static measurements. International Journal of Solids and Structures, 44, 5301–5315.MATHCrossRef
5.
go back to reference Yam, L. H., Li, Y. Y., & Wong, W. O. (2002). Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches. Engineering Structures, 24(11), 1465–1475.CrossRef Yam, L. H., Li, Y. Y., & Wong, W. O. (2002). Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches. Engineering Structures, 24(11), 1465–1475.CrossRef
6.
go back to reference Ghrib, F., Li, L., & Wilbur, P. (2012). Damage identification of Euler-Bernoulli beams using static responses. Journal of Engineering Mechanics, 138(2), 405–415.CrossRef Ghrib, F., Li, L., & Wilbur, P. (2012). Damage identification of Euler-Bernoulli beams using static responses. Journal of Engineering Mechanics, 138(2), 405–415.CrossRef
7.
go back to reference Amiri, G. G., Hosseinzadeh, A. Z., Bagheri, A., & Koo, K. Y. (2013). Damage prognosis by means of modal residual force and static deflections obtained by modal flexibility based on the diagonalization method. Smart Materials and Structures, 22(7), 075032.CrossRef Amiri, G. G., Hosseinzadeh, A. Z., Bagheri, A., & Koo, K. Y. (2013). Damage prognosis by means of modal residual force and static deflections obtained by modal flexibility based on the diagonalization method. Smart Materials and Structures, 22(7), 075032.CrossRef
8.
go back to reference Rucka, M., & Wilde, K. (2006). Crack identification using wavelets on experimental static deflection profiles. Engineering Structures, 28(2), 279–288.CrossRef Rucka, M., & Wilde, K. (2006). Crack identification using wavelets on experimental static deflection profiles. Engineering Structures, 28(2), 279–288.CrossRef
9.
go back to reference Sarangapani, G., Ganguli, R., & Murthy, C. R. L. (2013). Spatial wavelet approach to local matrix crack detection in composite beams with ply level material uncertainty. Applied Composite Materials, 20(4), 719–746.CrossRef Sarangapani, G., Ganguli, R., & Murthy, C. R. L. (2013). Spatial wavelet approach to local matrix crack detection in composite beams with ply level material uncertainty. Applied Composite Materials, 20(4), 719–746.CrossRef
10.
go back to reference Mandelbrot, B. B. (1983). The fractal geometry of nature. Newyork: Freeman and Co.CrossRef Mandelbrot, B. B. (1983). The fractal geometry of nature. Newyork: Freeman and Co.CrossRef
11.
go back to reference Katz, M. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.CrossRef Katz, M. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.CrossRef
12.
go back to reference Esteller, R., Vachtsevanos, G., Echauz, J., & Litt, B. (2001). A comparison of waveform fractal dimension algorithms. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(2), 177–183.CrossRef Esteller, R., Vachtsevanos, G., Echauz, J., & Litt, B. (2001). A comparison of waveform fractal dimension algorithms. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(2), 177–183.CrossRef
13.
go back to reference Paramanathan, P., & Uthayakumar, R. (2008). Application of fractal theory in analysis of human electroencephalographic signals. Computers in Biology and Medicine, 38, 372–378.MATHCrossRef Paramanathan, P., & Uthayakumar, R. (2008). Application of fractal theory in analysis of human electroencephalographic signals. Computers in Biology and Medicine, 38, 372–378.MATHCrossRef
14.
go back to reference Raghavendra, B. S., & Dutt, D. N. (2009). A note on fractal dimensions of biomedical waveforms. Computers in Biology and Medicine, 39, 1006–1012.CrossRef Raghavendra, B. S., & Dutt, D. N. (2009). A note on fractal dimensions of biomedical waveforms. Computers in Biology and Medicine, 39, 1006–1012.CrossRef
15.
go back to reference Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical Image Analysis, 13, 634–649.CrossRef Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical Image Analysis, 13, 634–649.CrossRef
16.
go back to reference Hadjileontiadis, L. J., Douka, E., & Trochidis, A. (2005). Fractal dimension analysis for crack identification in beam structures. Mechanical Systems and Signal Processing, 19(3), 659–674.CrossRef Hadjileontiadis, L. J., Douka, E., & Trochidis, A. (2005). Fractal dimension analysis for crack identification in beam structures. Mechanical Systems and Signal Processing, 19(3), 659–674.CrossRef
17.
go back to reference Hadjileontiadis, L. J., & Douka, E. (2007). Crack detection in plates using fractal dimension. Engineering Structures, 29(7), 1612–1625.CrossRef Hadjileontiadis, L. J., & Douka, E. (2007). Crack detection in plates using fractal dimension. Engineering Structures, 29(7), 1612–1625.CrossRef
18.
go back to reference Qiao, P. Z., Lu, K., Lestari, W., & Wang, J. (2007). Curvature mode shape-based damage detection in composite laminated plates. Composite Structures, 80, 409–428.CrossRef Qiao, P. Z., Lu, K., Lestari, W., & Wang, J. (2007). Curvature mode shape-based damage detection in composite laminated plates. Composite Structures, 80, 409–428.CrossRef
19.
go back to reference Shi, J., Xu, X., Wang, J., & Lia, G. (2010). Beam damage detection using computer vision technology. Nondestructive Testing and Evaluation, 25(3), 189–204.CrossRef Shi, J., Xu, X., Wang, J., & Lia, G. (2010). Beam damage detection using computer vision technology. Nondestructive Testing and Evaluation, 25(3), 189–204.CrossRef
20.
go back to reference Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRef Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRef
21.
go back to reference Gayathri, P., Umesh, K., & Ganguli, R. (2010). Effect of matrix cracking and material uncertainty on composite plates. Reliability Engineering & System Safety, 95(7), 716–728.CrossRef Gayathri, P., Umesh, K., & Ganguli, R. (2010). Effect of matrix cracking and material uncertainty on composite plates. Reliability Engineering & System Safety, 95(7), 716–728.CrossRef
22.
go back to reference Jeong, H. K., & Shenoi, R. A. (2000). Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Computers and Structures, 76(3), 219–235.CrossRef Jeong, H. K., & Shenoi, R. A. (2000). Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Computers and Structures, 76(3), 219–235.CrossRef
23.
go back to reference Yurgartis, S. W. (1987). Measurement of small angle fiber misalignments in continuous fiber composites. Composites Science and Technology, 30(4), 279–293.CrossRef Yurgartis, S. W. (1987). Measurement of small angle fiber misalignments in continuous fiber composites. Composites Science and Technology, 30(4), 279–293.CrossRef
24.
go back to reference Mehrez, L., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part I: Experimental database construction. Mechanical Systems and Signal Processing, 27, 471–483. Mehrez, L., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part I: Experimental database construction. Mechanical Systems and Signal Processing, 27, 471–483.
25.
go back to reference Mehrez, L., Doostan, A., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part II: Uncertainty modelling. Mechanical Systems and Signal Processing, 27, 484–498. Mehrez, L., Doostan, A., Moens, D., & Vandepitte, D. (2012). Stochastic identification of composite material properties from limited experimental databases, part II: Uncertainty modelling. Mechanical Systems and Signal Processing, 27, 484–498.
26.
go back to reference Carbillet, S., Richard, F., & Boubakar, L. (2007). Reliability indicator for layered composites with strongly non-linear behaviour. Composites Science and Technology, 69(1), 81–87.CrossRef Carbillet, S., Richard, F., & Boubakar, L. (2007). Reliability indicator for layered composites with strongly non-linear behaviour. Composites Science and Technology, 69(1), 81–87.CrossRef
27.
go back to reference Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.MATHCrossRef Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.MATHCrossRef
28.
go back to reference Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: Theory and analysis (2nd ed.). CRC Press. Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: Theory and analysis (2nd ed.). CRC Press.
29.
go back to reference Murugan, S., Chowdhury, R., Adhikari, S., & Friswell, M. I. (2012). Helicopter aeroelastic analysis with spatially uncertain rotor blade properties. Aerospace Science and Technology, 16, 29–39.CrossRef Murugan, S., Chowdhury, R., Adhikari, S., & Friswell, M. I. (2012). Helicopter aeroelastic analysis with spatially uncertain rotor blade properties. Aerospace Science and Technology, 16, 29–39.CrossRef
30.
go back to reference Hinke, L., Pichler, L., Pradlwarter, H. J., Mace, B. R., & Waters, T. P. (2011). Modelling of spatial variations in vibration analysis with application to an automotive windshield. Finite Elements in Analysis and Design, 47(1), 55–620.CrossRef Hinke, L., Pichler, L., Pradlwarter, H. J., Mace, B. R., & Waters, T. P. (2011). Modelling of spatial variations in vibration analysis with application to an automotive windshield. Finite Elements in Analysis and Design, 47(1), 55–620.CrossRef
31.
go back to reference Fish, J., & Wu, W. (2011). A nonintrusive stochastic multiscale solver. International Journal for Numerical Methods In Engineering, 88, 862–879.MathSciNetMATHCrossRef Fish, J., & Wu, W. (2011). A nonintrusive stochastic multiscale solver. International Journal for Numerical Methods In Engineering, 88, 862–879.MathSciNetMATHCrossRef
32.
go back to reference Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef
33.
go back to reference Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002.CrossRef Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002.CrossRef
34.
go back to reference Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10(2), 115–129.CrossRef Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10(2), 115–129.CrossRef
35.
go back to reference Wu, W. F., Cheng, H. C., & Kang, C. K. (2000). Random field formulation of composite laminates. Composite Structures, 49(1), 87–93.CrossRef Wu, W. F., Cheng, H. C., & Kang, C. K. (2000). Random field formulation of composite laminates. Composite Structures, 49(1), 87–93.CrossRef
Metadata
Title
Fractal Dimension Based Damage Detection
Author
Ranjan Ganguli
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4988-5_8

Premium Partners