Skip to main content
Top
Published in: Journal of Materials Science 21/2020

16-04-2020 | Composites & nanocomposites

Fracture characterization of novel bioceramic microbeads filled polymer composite

Authors: John Duckworth, Takaaki Arahira, Mitsugu Todo

Published in: Journal of Materials Science | Issue 21/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The biomaterial poly(l-lactic acid) (PLLA) is commonly used for bone fixation devices and dental surgeries; however its natural osseointegrating ability is generally poor, which can lead to dislocation and partial fractures. Recently, calcium phosphate bioceramics have been incorporated into PLLA in order to redress this issue and improve the osseointegrating ability of the material. This study incorporated calcium phosphate microbeads in PLLA at various concentrations and measured their effect on the critical stress intensity factor, KIC and critical energy release rate at crack initiation, Gin, as well as the unusual fracture mechanic they induced. The inclusion of microbeads into the polymer matrix reduced the materials’ fracture toughness, from a KIC of 34 ± 7 Pa m−1/2 for blank PLLA, to 18 ± 1 Pa m−1/2 for the strongest bead containing group; and from a Gin of 1030 ± 150 J m−2 for blank PLLA to 200 ± 18 J m−2 for the same microbead containing group. Importantly however, the microbead containing groups fractured by a different mechanism, which was identified by observing fracture surface morphologies, electron probe microanalysis and finite element analysis. It was seen that polymer intruded into the porous microbeads, and resulted in regions of increased stiffness in the polymer matrix around each bead. This prevented void formation at the polymer/microbead interface, but it allowed the strain energy density to increase rapidly under load in microbead containing groups. This energy concentration in turn caused fractures to occur sooner, and resulted in the brittle fracture surfaces seen around microbeads. The identification of this fracture mechanism is important to understand, as it suggests a way to greatly improve the fracture toughness of the material, reducing the difference in stiffness of the two components. This fracture mechanism may also be useful in explaining other observed fracture events containing two materials of greatly varying stiffness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Majola A, Vainionpaa S, Rokkanen P, Mikkola HM, Tormala P (1992) Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation—strength and strength retention in the bone and subcutaneous tissue of rabbits. J Mater Sci Mater Med 3:43–47CrossRef Majola A, Vainionpaa S, Rokkanen P, Mikkola HM, Tormala P (1992) Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation—strength and strength retention in the bone and subcutaneous tissue of rabbits. J Mater Sci Mater Med 3:43–47CrossRef
2.
go back to reference Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346CrossRef
3.
go back to reference Simion M, Misitiano U, Gionso L, Salvato A (1997) Treatment of dehiscences and fenestrations around dental implants using resorbable and nonresorbable membranes associated with bone autografts: a comparative clinical study. Int J Oral Maxillofac Implants 12:159–167 Simion M, Misitiano U, Gionso L, Salvato A (1997) Treatment of dehiscences and fenestrations around dental implants using resorbable and nonresorbable membranes associated with bone autografts: a comparative clinical study. Int J Oral Maxillofac Implants 12:159–167
4.
go back to reference Shafer BL, Simonian PT (2002) Broken poly-l-lactic acid interface screw after ligament reconstruction. J Arthrosc Relat Surg 18:1–4CrossRef Shafer BL, Simonian PT (2002) Broken poly-l-lactic acid interface screw after ligament reconstruction. J Arthrosc Relat Surg 18:1–4CrossRef
5.
go back to reference Kosaka M, Uemura F, Tomemori S, Kamiishi H (2003) Scanning electron microscope observations of ‘fractured’ biodegradable plates and screws. J Cranio-Maxillofac Surg 31:10–14CrossRef Kosaka M, Uemura F, Tomemori S, Kamiishi H (2003) Scanning electron microscope observations of ‘fractured’ biodegradable plates and screws. J Cranio-Maxillofac Surg 31:10–14CrossRef
7.
go back to reference Adell R, Lekholm U, Rockler B, Branemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10:387–416CrossRef Adell R, Lekholm U, Rockler B, Branemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10:387–416CrossRef
8.
go back to reference Rothman RH, Cohn JC (1990) Cemented versus cementless total hip-arthroplasty—a critical review. Clin Orthop Relat Res 254:153–169 Rothman RH, Cohn JC (1990) Cemented versus cementless total hip-arthroplasty—a critical review. Clin Orthop Relat Res 254:153–169
9.
go back to reference Lin PL, Fang HW, Tseng T, Lee WH (2007) Effects of hydroxyapatite on mechanical and biological behaviour of polylactic acid composite materials. Mater Lett 61:3009–3013CrossRef Lin PL, Fang HW, Tseng T, Lee WH (2007) Effects of hydroxyapatite on mechanical and biological behaviour of polylactic acid composite materials. Mater Lett 61:3009–3013CrossRef
10.
go back to reference Mondal S, Nguyen TP, Pham V, Hoang G, Manivasagan P, Kim MH, Nam SY, Oh J (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46:3443–3455CrossRef Mondal S, Nguyen TP, Pham V, Hoang G, Manivasagan P, Kim MH, Nam SY, Oh J (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46:3443–3455CrossRef
11.
go back to reference Ranjan N, Singh R, Ahuja IPS (2020) Development of PLA-HAp-CS-based biocompatible functional prototype: a case study. J Thermoplast Compos 33:305–323CrossRef Ranjan N, Singh R, Ahuja IPS (2020) Development of PLA-HAp-CS-based biocompatible functional prototype: a case study. J Thermoplast Compos 33:305–323CrossRef
12.
go back to reference Backes EH, Pires LD, Beatrice CAG, Costa LC, Passador FR, Pessan LA (2020) Fabrication of biocompatible composites of poly(lactic acid)/hydroxyapatite envisioning medical applications. Polym Eng Sci 60:636–644CrossRef Backes EH, Pires LD, Beatrice CAG, Costa LC, Passador FR, Pessan LA (2020) Fabrication of biocompatible composites of poly(lactic acid)/hydroxyapatite envisioning medical applications. Polym Eng Sci 60:636–644CrossRef
13.
go back to reference Cardenas-Trivino G, Carrasco-Garcia G (2019) Chitosan composites prepared with hydroxyapatite and lactic acid as bone substitute. J Chil Chem Soc 64:4613–4618CrossRef Cardenas-Trivino G, Carrasco-Garcia G (2019) Chitosan composites prepared with hydroxyapatite and lactic acid as bone substitute. J Chil Chem Soc 64:4613–4618CrossRef
14.
go back to reference Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V (2020) In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: insights into materials for bone regeneration. J Mech Behav Biomed 104:103641. https://doi.org/10.1016/j.jmbbm.2020.103641 CrossRef Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V (2020) In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: insights into materials for bone regeneration. J Mech Behav Biomed 104:103641. https://​doi.​org/​10.​1016/​j.​jmbbm.​2020.​103641 CrossRef
15.
go back to reference Kane JK, Weiss-Bilka HE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25CrossRef Kane JK, Weiss-Bilka HE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25CrossRef
16.
go back to reference Todo M, Park SD, Arakawa K, Takenoshita Y (2006) Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites. Compos Pat A Appl Sci 37:2221–2225CrossRef Todo M, Park SD, Arakawa K, Takenoshita Y (2006) Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites. Compos Pat A Appl Sci 37:2221–2225CrossRef
17.
go back to reference ASTM Standard E399-17, Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials, ASTM International, West Conshohocken, PA, 2017 ASTM Standard E399-17, Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials, ASTM International, West Conshohocken, PA, 2017
18.
go back to reference ASTM Standard D5045-14, Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials, ASTM International, West Conshohocken, PA, 2014 ASTM Standard D5045-14, Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials, ASTM International, West Conshohocken, PA, 2014
19.
go back to reference Marghitu D, Diaconescu C, Ciocirlan B (2001) 3—Mechanics of materials. In: Irwin J (ed) Mechanical engineer’s handbook. Academic Press, New York Marghitu D, Diaconescu C, Ciocirlan B (2001) 3—Mechanics of materials. In: Irwin J (ed) Mechanical engineer’s handbook. Academic Press, New York
20.
go back to reference Mechanical Finder v7.0, Research Centre of Computational Mechanics Inc., 2019 Mechanical Finder v7.0, Research Centre of Computational Mechanics Inc., 2019
21.
go back to reference Sakka S, Bouaziz J, Ben Ayed F (2013) Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. IntechOpen, Rijeka Sakka S, Bouaziz J, Ben Ayed F (2013) Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. IntechOpen, Rijeka
22.
go back to reference Laasri S, Taha M, Hlil E, Laghzizil A, Hajjaji A (2012) Manufacturing and mechanical properties of calcium phosphate biomaterials. C R Mech 340:715–720CrossRef Laasri S, Taha M, Hlil E, Laghzizil A, Hajjaji A (2012) Manufacturing and mechanical properties of calcium phosphate biomaterials. C R Mech 340:715–720CrossRef
23.
go back to reference Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef
24.
go back to reference Metsger DS, Rieger MR, Foreman DW (1999) Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. J Mater Sci Mater Med 10:9–17CrossRef Metsger DS, Rieger MR, Foreman DW (1999) Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. J Mater Sci Mater Med 10:9–17CrossRef
25.
go back to reference Eawwiboonthanakit N, Jaafar M, Abdul HZ, Todo M, Lila B (2014) Tensile properties of poly(l-lactic) acid (PLLA) blends. Adv Mater Res 1024:179–183CrossRef Eawwiboonthanakit N, Jaafar M, Abdul HZ, Todo M, Lila B (2014) Tensile properties of poly(l-lactic) acid (PLLA) blends. Adv Mater Res 1024:179–183CrossRef
Metadata
Title
Fracture characterization of novel bioceramic microbeads filled polymer composite
Authors
John Duckworth
Takaaki Arahira
Mitsugu Todo
Publication date
16-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04656-w

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners