Skip to main content
Top
Published in: Journal of Materials Science 19/2021

05-04-2021 | Energy materials

Fragmenting C60 toward enhanced electrochemical CO2 reduction

Authors: Dong Yan, Zhen Peng, Wei Wang, Peng Zeng, Yiyin Huang

Published in: Journal of Materials Science | Issue 19/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon-based metal-free catalysts exhibit great applications in electrochemical CO2 reduction (ECR), while most studies merely focus on large-sized carbons with limited ratio of surface atoms for engineering to create surface active centers. Here, we report a joint treatment of C60 by heating and plasma to induce a dramatic performance promotion during ECR. The electrochemical measurements indicate the Faraday efficiency for ECR toward CO production kept at high level over 80% in a wide potential region from − 0.4 to − 0.7 V versus RHE, with the highest value reaching 96.8%. The physical characterization reveals that fragmentation of C60 occurs together with N/O doping, both of which could induce change in electron structure, causing the formation of *COOH intermediate and ultimately leading to the optimized activity and selectivity for CO production. This treatment route was further revealed to be applicative for other carbon materials, e.g., single-walled carbon nanotube, to promote its ECR activity and selectivity.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5:1–24 Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5:1–24
2.
go back to reference Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM (2018) Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater 31:1–24 Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM (2018) Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater 31:1–24
3.
go back to reference Arán-Ais RM, Gao D, Roldan Cuenya B (2018) Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res 51:2906–2917CrossRef Arán-Ais RM, Gao D, Roldan Cuenya B (2018) Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res 51:2906–2917CrossRef
4.
go back to reference Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672CrossRef Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672CrossRef
5.
go back to reference Arán-Ais RM, Gao D, Cuenya BR (2018) Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res 51:2906–2917CrossRef Arán-Ais RM, Gao D, Cuenya BR (2018) Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res 51:2906–2917CrossRef
6.
go back to reference Ross MB, Luna PD, Li Y, Dinh C-T, Kim D, Yang P, Sargent EH (2019) Designing materials for electrochemical carbon dioxide recycling. Nat Catal 2:648–658CrossRef Ross MB, Luna PD, Li Y, Dinh C-T, Kim D, Yang P, Sargent EH (2019) Designing materials for electrochemical carbon dioxide recycling. Nat Catal 2:648–658CrossRef
7.
go back to reference Mohamed AGA, Huang Y, Xie J, Borse RA, Parameswaram G, Wang Y (2020) Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today 33:1–18CrossRef Mohamed AGA, Huang Y, Xie J, Borse RA, Parameswaram G, Wang Y (2020) Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today 33:1–18CrossRef
8.
go back to reference Liu S, Yang H, Su X, Ding J, Mao Q, Huang Y, Zhang T, Liu B (2019) Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J Energy Chem 36:95–105CrossRef Liu S, Yang H, Su X, Ding J, Mao Q, Huang Y, Zhang T, Liu B (2019) Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J Energy Chem 36:95–105CrossRef
9.
go back to reference Popović S, Smiljanić M, Jovanovič P, Vavra J, Buonsanti R, Hodnik N (2020) Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew Chem Int Ed 59:14736–14746CrossRef Popović S, Smiljanić M, Jovanovič P, Vavra J, Buonsanti R, Hodnik N (2020) Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew Chem Int Ed 59:14736–14746CrossRef
10.
go back to reference Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y (2017) Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Ed 56:10840–10844CrossRef Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y (2017) Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Ed 56:10840–10844CrossRef
11.
go back to reference Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51:16061–16044CrossRef Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51:16061–16044CrossRef
12.
go back to reference Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater 7:1700759CrossRef Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater 7:1700759CrossRef
13.
go back to reference Paul R, Zhu L, Chen H, Qu J, Dai L (2019) Recent advances in carbon-based metal-free electrocatalysts. Adv Mater 31:1–24 Paul R, Zhu L, Chen H, Qu J, Dai L (2019) Recent advances in carbon-based metal-free electrocatalysts. Adv Mater 31:1–24
14.
go back to reference Hu C, Dai L (2018) Doping of carbon materials for metal-free electrocatalysis. Adv Mater 31:1–17 Hu C, Dai L (2018) Doping of carbon materials for metal-free electrocatalysis. Adv Mater 31:1–17
15.
go back to reference He Z, Wei P, Chen N, Han J, Lu X (2021) N, S-Co-doped porous carbon nanofiber films derived from fullerenes (C60) as efficient electrocatalysts for oxygen reduction and a Zn–air battery. Chem A Eur J 27:1423–1429CrossRef He Z, Wei P, Chen N, Han J, Lu X (2021) N, S-Co-doped porous carbon nanofiber films derived from fullerenes (C60) as efficient electrocatalysts for oxygen reduction and a Zn–air battery. Chem A Eur J 27:1423–1429CrossRef
16.
go back to reference Xu T, Yu D, Du Z, Huang W, Lu X (2020) Two-dimensional mesoporous carbon materials derived from fullerene microsheets for energy applications. Chem A Eur J 26:10811–10816CrossRef Xu T, Yu D, Du Z, Huang W, Lu X (2020) Two-dimensional mesoporous carbon materials derived from fullerene microsheets for energy applications. Chem A Eur J 26:10811–10816CrossRef
17.
go back to reference Zhang L, Lin C-Y, Zhang D, Gong L, Zhu Y, Zhao Z, Xu Q, Li H, Xia Z (2018) Guiding principles for designing highly efficient metal-free carbon catalysts. Adv Mater 31:1–16 Zhang L, Lin C-Y, Zhang D, Gong L, Zhu Y, Zhao Z, Xu Q, Li H, Xia Z (2018) Guiding principles for designing highly efficient metal-free carbon catalysts. Adv Mater 31:1–16
18.
go back to reference Zhou Y, Che F, Liu M, Zou C, Liang Z, Luna PD, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham T-K, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH (2018) Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem 10:974–980CrossRef Zhou Y, Che F, Liu M, Zou C, Liang Z, Luna PD, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham T-K, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH (2018) Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem 10:974–980CrossRef
19.
go back to reference Li W, Herkt B, Seredych M, Bandosz TJ (2017) Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. Appl Catal B 207:195–206CrossRef Li W, Herkt B, Seredych M, Bandosz TJ (2017) Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. Appl Catal B 207:195–206CrossRef
20.
go back to reference Liu Y, Zhang Y, Cheng K, Quan X, Fan X, Su Y, Chen S, Zhao H, Zhang Y, Yu H, Hoffmann MR (2017) Selective electrochemical reduction of CO2 to ethanol on B and N codoped nanodiamond. Angew Chem Int Ed 56:15607–15611CrossRef Liu Y, Zhang Y, Cheng K, Quan X, Fan X, Su Y, Chen S, Zhao H, Zhang Y, Yu H, Hoffmann MR (2017) Selective electrochemical reduction of CO2 to ethanol on B and N codoped nanodiamond. Angew Chem Int Ed 56:15607–15611CrossRef
21.
go back to reference Wang W, Shang L, Chang G, Yan C, Shi R, Zhao Y, Waterhouse GIN, Yang D, Zhang T (2019) Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv Mater 31:1808276CrossRef Wang W, Shang L, Chang G, Yan C, Shi R, Zhao Y, Waterhouse GIN, Yang D, Zhang T (2019) Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv Mater 31:1808276CrossRef
22.
go back to reference Titirici M (2019) Defects win over pyridinic sites. Nat Catal 2(8):642–643CrossRef Titirici M (2019) Defects win over pyridinic sites. Nat Catal 2(8):642–643CrossRef
23.
go back to reference Hursán D, Samu AA, Janovák L, Artyushkova K, Asset T, Atanassov P, Janáky C (2019) Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule 3:1719–1733CrossRef Hursán D, Samu AA, Janovák L, Artyushkova K, Asset T, Atanassov P, Janáky C (2019) Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule 3:1719–1733CrossRef
24.
go back to reference Ortiz-Medina J, Wang Z, Cruz-Silva R, Morelos-Gomez A, Wang F, Yao X, Terrones M, Endo M (2019) Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv Mater 31:1–16 Ortiz-Medina J, Wang Z, Cruz-Silva R, Morelos-Gomez A, Wang F, Yao X, Terrones M, Endo M (2019) Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv Mater 31:1–16
25.
go back to reference Zou X, Liu M, Wu J, Ajayan PM, Li J, Liu B, Yakobson BI (2017) How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal 7:6245–6250CrossRef Zou X, Liu M, Wu J, Ajayan PM, Li J, Liu B, Yakobson BI (2017) How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal 7:6245–6250CrossRef
26.
go back to reference Handoko AD, Wei F, Jenndy YBS, Seh ZW (2018) Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal 1:922–934CrossRef Handoko AD, Wei F, Jenndy YBS, Seh ZW (2018) Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal 1:922–934CrossRef
27.
go back to reference Liu T, Ali S, Lian Z, Si C, Su DS, Li B (2018) Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of bonding configuration of phosphorus. J Mater Chem A 6:19998–20004CrossRef Liu T, Ali S, Lian Z, Si C, Su DS, Li B (2018) Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of bonding configuration of phosphorus. J Mater Chem A 6:19998–20004CrossRef
28.
go back to reference Lin Y, Sun X, Su DS, Centi G, Perathoner S (2018) Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev 47:8438–8473CrossRef Lin Y, Sun X, Su DS, Centi G, Perathoner S (2018) Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev 47:8438–8473CrossRef
29.
go back to reference Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S (2019) Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew Chem Int Ed 58:3859–3864CrossRef Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S (2019) Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew Chem Int Ed 58:3859–3864CrossRef
30.
go back to reference Xue X, Yang H, Yang T, Yuan P, Li Q, Mu S, Zheng X, Chi L, Zhu J, Li Y, Zhang J, Xu Q (2019) N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J Mater Chem A 7:15271–15277CrossRef Xue X, Yang H, Yang T, Yuan P, Li Q, Mu S, Zheng X, Chi L, Zhu J, Li Y, Zhang J, Xu Q (2019) N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J Mater Chem A 7:15271–15277CrossRef
31.
go back to reference Chen Z, Mou K, Yao S, Liu L (2018) Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J Mater Chem A 6:11236–11243CrossRef Chen Z, Mou K, Yao S, Liu L (2018) Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J Mater Chem A 6:11236–11243CrossRef
32.
go back to reference Zheng S, Ju H, Lu X (2015) A High-performance supercapacitor based on KOH activated 1D C70 microstructures. Adv Energy Mater 5:1500871CrossRef Zheng S, Ju H, Lu X (2015) A High-performance supercapacitor based on KOH activated 1D C70 microstructures. Adv Energy Mater 5:1500871CrossRef
33.
go back to reference Vassallo AM, Pang LSK, Cole-Clarke PA, Wilson MA (1991) Emission FRIR study of Ca thermal stability and oxidation. J Am Chem Soc 113:7820–7821CrossRef Vassallo AM, Pang LSK, Cole-Clarke PA, Wilson MA (1991) Emission FRIR study of Ca thermal stability and oxidation. J Am Chem Soc 113:7820–7821CrossRef
34.
go back to reference Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29:1–8 Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29:1–8
35.
go back to reference Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou X-D, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2015) Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett 16:466–470CrossRef Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou X-D, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2015) Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett 16:466–470CrossRef
36.
go back to reference Wang Y, Han P, Lv X, Zhang L, Zheng G (2018) Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2:2551–2582CrossRef Wang Y, Han P, Lv X, Zhang L, Zheng G (2018) Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2:2551–2582CrossRef
37.
go back to reference Pan F, Li B, Xiang X, Wang G, Li Y (2019) Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering. ACS Catal 9:2124–2133CrossRef Pan F, Li B, Xiang X, Wang G, Li Y (2019) Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering. ACS Catal 9:2124–2133CrossRef
38.
go back to reference Liu S, Yang H, Huang X, Liu L, Cai W, Gao J, Li X, Zhang T, Huang Y, Liu B (2018) Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv Func Mater 28:1–7 Liu S, Yang H, Huang X, Liu L, Cai W, Gao J, Li X, Zhang T, Huang Y, Liu B (2018) Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv Func Mater 28:1–7
39.
go back to reference Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS, Yakobson BI, Lou J, Ajayan PM, Zhou X (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew Chem Int Ed 54:13701–13705CrossRef Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS, Yakobson BI, Lou J, Ajayan PM, Zhou X (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew Chem Int Ed 54:13701–13705CrossRef
Metadata
Title
Fragmenting C60 toward enhanced electrochemical CO2 reduction
Authors
Dong Yan
Zhen Peng
Wei Wang
Peng Zeng
Yiyin Huang
Publication date
05-04-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06061-3

Other articles of this Issue 19/2021

Journal of Materials Science 19/2021 Go to the issue

Premium Partners