Skip to main content
Top
Published in:

11-04-2022

Free Component Analysis: Theory, Algorithms and Applications

Authors: Raj Rao Nadakuditi, Hao Wu

Published in: Foundations of Computational Mathematics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We describe a method for unmixing mixtures of freely independent random variables in a manner analogous to the independent component analysis (ICA)-based method for unmixing independent random variables from their additive mixtures. Random matrices play the role of free random variables in this context so the method we develop, which we call free component analysis (FCA), unmixes matrices from additive mixtures of matrices. Thus, while the mixing model is standard, the novelty and difference in unmixing performance comes from the introduction of a new statistical criteria, derived from free probability theory, that quantify freeness analogous to how kurtosis and entropy quantify independence. We describe the theory, the various algorithms, and compare FCA to vanilla ICA which does not account for spatial or temporal structure. We highlight why the statistical criteria make FCA also vanilla despite its matricial underpinnings and show that FCA performs comparably to, and sometimes better than, (vanilla) ICA in every application, such as image and speech unmixing, where ICA has been known to succeed. Our computational experiments suggest that not-so-random matrices, such as images and short-time Fourier transform matrix of waveforms are (closer to being) freer “in the wild” than we might have theoretically expected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Here \({{\widehat{F}}}(\cdot )\) is either the (self-adjoint or rectangular) free kurtosis, the free entropy or a higher (than fourth)-order (even-valued) free cumulant. See Table 2.
 
Literature
1.
go back to reference Almeida, L.B.: MISEP–Linear and nonlinear ICA based on mutual information. Journal of Machine Learning Research 4(Dec), 1297–1318 (2003)MATH Almeida, L.B.: MISEP–Linear and nonlinear ICA based on mutual information. Journal of Machine Learning Research 4(Dec), 1297–1318 (2003)MATH
2.
go back to reference Anderson, G.W., Farrell, B.: Asymptotically liberating sequences of random unitary matrices. Advances in Mathematics 255, 381–413 (2014)MathSciNetCrossRefMATH Anderson, G.W., Farrell, B.: Asymptotically liberating sequences of random unitary matrices. Advances in Mathematics 255, 381–413 (2014)MathSciNetCrossRefMATH
3.
go back to reference Arora, S., Ge, R., Moitra, A., Sachdeva, S.: Provable ica with unknown gaussian noise, with implications for gaussian mixtures and autoencoders. In: Advances in Neural Information Processing Systems, pp. 2375–2383 (2012) Arora, S., Ge, R., Moitra, A., Sachdeva, S.: Provable ica with unknown gaussian noise, with implications for gaussian mixtures and autoencoders. In: Advances in Neural Information Processing Systems, pp. 2375–2383 (2012)
4.
go back to reference Barry, D., Coyle, E., Fitzgerald, D., Lawlor, R.: Single channel source separation using short-time independent component analysis. In: Audio Engineering Society Convention 119 (2005). Audio Engineering Society Barry, D., Coyle, E., Fitzgerald, D., Lawlor, R.: Single channel source separation using short-time independent component analysis. In: Audio Engineering Society Convention 119 (2005). Audio Engineering Society
5.
go back to reference Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision research 37(23), 3327–3338 (1997)CrossRef Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision research 37(23), 3327–3338 (1997)CrossRef
6.
go back to reference Benaych-Georges, F.: Rectangular random matrices, entropy, and fisher’s information. Journal of Operator Theory, 371–419 (2009a) Benaych-Georges, F.: Rectangular random matrices, entropy, and fisher’s information. Journal of Operator Theory, 371–419 (2009a)
7.
go back to reference Benaych-Georges, F.: Rectangular random matrices, related convolution. Probability Theory and Related Fields 144(3-4), 471–515 (2009b)MathSciNetCrossRefMATH Benaych-Georges, F.: Rectangular random matrices, related convolution. Probability Theory and Related Fields 144(3-4), 471–515 (2009b)MathSciNetCrossRefMATH
8.
go back to reference Benaych-Georges, F.: Rectangular random matrices, related convolution. Probability Theory and Related Fields 144(3-4), 471–515 (2009c)MathSciNetCrossRefMATH Benaych-Georges, F.: Rectangular random matrices, related convolution. Probability Theory and Related Fields 144(3-4), 471–515 (2009c)MathSciNetCrossRefMATH
9.
go back to reference Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal processing 81(11), 2353–2362 (2001)CrossRefMATH Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal processing 81(11), 2353–2362 (2001)CrossRefMATH
10.
go back to reference Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research 15, 1455–1459 (2014)MATH Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research 15, 1455–1459 (2014)MATH
11.
12.
go back to reference Cardoso, J.-F.: High-order contrasts for independent component analysis. Neural computation 11(1), 157–192 (1999)MathSciNetCrossRef Cardoso, J.-F.: High-order contrasts for independent component analysis. Neural computation 11(1), 157–192 (1999)MathSciNetCrossRef
13.
go back to reference Casey, M.A., Westner, A.: Separation of mixed audio sources by independent subspace analysis. In: ICMC, pp. 154–161 (2000) Casey, M.A., Westner, A.: Separation of mixed audio sources by independent subspace analysis. In: ICMC, pp. 154–161 (2000)
14.
16.
go back to reference Chissom, B.S.: Interpretation of the kurtosis statistic. The American Statistician 24(4), 19–22 (1970) Chissom, B.S.: Interpretation of the kurtosis statistic. The American Statistician 24(4), 19–22 (1970)
17.
18.
go back to reference Comon, P.: Independent component analysis, a new concept? Signal processing 36(3), 287–314 (1994)CrossRefMATH Comon, P.: Independent component analysis, a new concept? Signal processing 36(3), 287–314 (1994)CrossRefMATH
19.
go back to reference Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic press, Cambridge, MA (2010) Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic press, Cambridge, MA (2010)
20.
go back to reference Cornish, E.A., Fisher, R.A.: Moments and cumulants in the specification of distributions. Revue de l’Institut international de Statistique, 307–320 (1938) Cornish, E.A., Fisher, R.A.: Moments and cumulants in the specification of distributions. Revue de l’Institut international de Statistique, 307–320 (1938)
21.
go back to reference Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Hoboken, NJ (2012)MATH Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Hoboken, NJ (2012)MATH
22.
go back to reference Cruces, S., Castedo, L., Cichocki, A.: Robust blind source separation algorithms using cumulants. Neurocomputing 49(1-4), 87–118 (2002)CrossRefMATH Cruces, S., Castedo, L., Cichocki, A.: Robust blind source separation algorithms using cumulants. Neurocomputing 49(1-4), 87–118 (2002)CrossRefMATH
23.
go back to reference Davies, M.E., James, C.J.: Source separation using single channel ica. Signal Processing 87(8), 1819–1832 (2007)CrossRefMATH Davies, M.E., James, C.J.: Source separation using single channel ica. Signal Processing 87(8), 1819–1832 (2007)CrossRefMATH
24.
go back to reference De Lathauwer, L., Castaing, J., Cardoso, J.-F.: Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Transactions on Signal Processing 55(6), 2965–2973 (2007)MathSciNetCrossRefMATH De Lathauwer, L., Castaing, J., Cardoso, J.-F.: Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Transactions on Signal Processing 55(6), 2965–2973 (2007)MathSciNetCrossRefMATH
26.
go back to reference Eriksson, J., Koivunen, V.: Blind identifiability of class of nonlinear instantaneous ICA models. In: 2002 11th European Signal Processing Conference, pp. 1–4 (2002). IEEE Eriksson, J., Koivunen, V.: Blind identifiability of class of nonlinear instantaneous ICA models. In: 2002 11th European Signal Processing Conference, pp. 1–4 (2002). IEEE
27.
go back to reference Eriksson, J., Koivunen, V.: Identifiability, separability, and uniqueness of linear ica models. IEEE signal processing letters 11(7), 601–604 (2004)CrossRef Eriksson, J., Koivunen, V.: Identifiability, separability, and uniqueness of linear ica models. IEEE signal processing letters 11(7), 601–604 (2004)CrossRef
28.
go back to reference Frieze, A., Jerrum, M., Kannan, R.: Learning linear transformations. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 359–368 (1996). IEEE Frieze, A., Jerrum, M., Kannan, R.: Learning linear transformations. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 359–368 (1996). IEEE
29.
go back to reference Gao, P., Chang, E.-C., Wyse, L.: Blind separation of fetal ecg from single mixture using svd and ica. In: Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, vol. 3, pp. 1418–1422 (2003). IEEE Gao, P., Chang, E.-C., Wyse, L.: Blind separation of fetal ecg from single mixture using svd and ica. In: Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, vol. 3, pp. 1418–1422 (2003). IEEE
30.
go back to reference Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007) Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
31.
go back to reference Haykin, S., Chen, Z.: The cocktail party problem. Neural computation 17(9), 1875–1902 (2005)CrossRef Haykin, S., Chen, Z.: The cocktail party problem. Neural computation 17(9), 1875–1902 (2005)CrossRef
32.
go back to reference Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs, vol. 77, p. 376. American Mathematical Society, Providence, RI (2000) Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs, vol. 77, p. 376. American Mathematical Society, Providence, RI (2000)
33.
go back to reference Hoyer, P.O., Hyvärinen, A.: Independent component analysis applied to feature extraction from colour and stereo images. Network: computation in neural systems 11(3), 191–210 (2000)CrossRefMATH Hoyer, P.O., Hyvärinen, A.: Independent component analysis applied to feature extraction from colour and stereo images. Network: computation in neural systems 11(3), 191–210 (2000)CrossRefMATH
34.
go back to reference Hyvarinen, A.J., Morioka, H.: Nonlinear ICA of temporally dependent stationary sources. (2017). Proceedings of Machine Learning Research Hyvarinen, A.J., Morioka, H.: Nonlinear ICA of temporally dependent stationary sources. (2017). Proceedings of Machine Learning Research
35.
go back to reference Hyvarinen, A.: A family of fixed-point algorithms for independent component analysis. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3917–3920 (1997a). IEEE Hyvarinen, A.: A family of fixed-point algorithms for independent component analysis. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3917–3920 (1997a). IEEE
36.
go back to reference Hyvarinen, A.: One-unit contrast functions for independent component analysis: A statistical analysis. In: Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, pp. 388–397 (1997b). IEEE Hyvarinen, A.: One-unit contrast functions for independent component analysis: A statistical analysis. In: Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, pp. 388–397 (1997b). IEEE
37.
go back to reference Hyvarinen, A.: Fast and robust fixed-point algorithms for Independent Component Analysis. IEEE transactions on Neural Networks 10(3), 626–634 (1999)CrossRef Hyvarinen, A.: Fast and robust fixed-point algorithms for Independent Component Analysis. IEEE transactions on Neural Networks 10(3), 626–634 (1999)CrossRef
38.
go back to reference Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. In: Advances in Neural Information Processing Systems, pp. 3765–3773 (2016) Hyvarinen, A., Morioka, H.: Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. In: Advances in Neural Information Processing Systems, pp. 3765–3773 (2016)
39.
go back to reference Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural networks 13(4-5), 411–430 (2000)CrossRef Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural networks 13(4-5), 411–430 (2000)CrossRef
40.
go back to reference Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis vol. 46. John Wiley & Sons, Hoboken, NJ (2004) Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis vol. 46. John Wiley & Sons, Hoboken, NJ (2004)
41.
go back to reference Hyvarinen, A., Sasaki, H., Turner, R.E.: Nonlinear ICA using auxiliary variables and generalized contrastive learning. arXiv preprint arXiv:1805.08651 (2018) Hyvarinen, A., Sasaki, H., Turner, R.E.: Nonlinear ICA using auxiliary variables and generalized contrastive learning. arXiv preprint arXiv:​1805.​08651 (2018)
42.
go back to reference Ilmonen, P., Nordhausen, K., Oja, H., Ollila, E.: A new performance index for ica: properties, computation and asymptotic analysis. In: International Conference on Latent Variable Analysis and Signal Separation, pp. 229–236 (2010). Springer Ilmonen, P., Nordhausen, K., Oja, H., Ollila, E.: A new performance index for ica: properties, computation and asymptotic analysis. In: International Conference on Latent Variable Analysis and Signal Separation, pp. 229–236 (2010). Springer
43.
go back to reference Lee, T.-W.: Independent Component Analysis. In: Independent Component Analysis, pp. 27–66. Springer, Boston (1998) Lee, T.-W.: Independent Component Analysis. In: Independent Component Analysis, pp. 27–66. Springer, Boston (1998)
44.
go back to reference Lee, T.-W., Girolami, M., Bell, A.J., Sejnowski, T.J.: A unifying information-theoretic framework for independent component analysis. Computers & Mathematics with Applications 39(11), 1–21 (2000)MathSciNetCrossRefMATH Lee, T.-W., Girolami, M., Bell, A.J., Sejnowski, T.J.: A unifying information-theoretic framework for independent component analysis. Computers & Mathematics with Applications 39(11), 1–21 (2000)MathSciNetCrossRefMATH
45.
go back to reference Lehner, F.: Cumulants in noncommutative probability theory i. noncommutative exchangeability systems. Mathematische Zeitschrift 248(1), 67–100 (2004)MathSciNetCrossRefMATH Lehner, F.: Cumulants in noncommutative probability theory i. noncommutative exchangeability systems. Mathematische Zeitschrift 248(1), 67–100 (2004)MathSciNetCrossRefMATH
46.
go back to reference Male, C.: Traffic distributions and independence: permutation invariant random matrices and the three notions of independence. arXiv preprint arXiv:1111.4662 (2011) Male, C.: Traffic distributions and independence: permutation invariant random matrices and the three notions of independence. arXiv preprint arXiv:​1111.​4662 (2011)
47.
go back to reference Meyer, C.D., Stewart, G.W.: Derivatives and perturbations of eigenvectors. SIAM Journal on Numerical Analysis 25(3), 679–691 (1988)MathSciNetCrossRefMATH Meyer, C.D., Stewart, G.W.: Derivatives and perturbations of eigenvectors. SIAM Journal on Numerical Analysis 25(3), 679–691 (1988)MathSciNetCrossRefMATH
48.
go back to reference Mika, D., Budzik, G., Jozwik, J.: Single channel source separation with ica-based time-frequency decomposition. Sensors 20(7), 2019 (2020)CrossRef Mika, D., Budzik, G., Jozwik, J.: Single channel source separation with ica-based time-frequency decomposition. Sensors 20(7), 2019 (2020)CrossRef
49.
go back to reference Mingo, J.A., Speicher, R.: Free Probability and Random Matrices vol. 35. Springer, New York (2017)MATH Mingo, J.A., Speicher, R.: Free Probability and Random Matrices vol. 35. Springer, New York (2017)MATH
50.
go back to reference Mitsui, Y., Kitamura, D., Takamichi, S., Ono, N., Saruwatari, H.: Blind Source Separation based on independent low-rank matrix analysis with sparse regularization for time-series activity. In: Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference On, pp. 21–25 (2017). IEEE Mitsui, Y., Kitamura, D., Takamichi, S., Ono, N., Saruwatari, H.: Blind Source Separation based on independent low-rank matrix analysis with sparse regularization for time-series activity. In: Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference On, pp. 21–25 (2017). IEEE
53.
go back to reference Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability vol. 13. Cambridge University Press, Cambridge (2006)CrossRefMATH Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability vol. 13. Cambridge University Press, Cambridge (2006)CrossRefMATH
54.
go back to reference Oja, E., Yuan, Z.: The fastica algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks 17(6), 1370–1381 (2006)CrossRef Oja, E., Yuan, Z.: The fastica algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks 17(6), 1370–1381 (2006)CrossRef
55.
go back to reference Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11), 559–572 (1901)CrossRefMATH Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11), 559–572 (1901)CrossRefMATH
56.
go back to reference Pourazad, M., Moussavi, Z., Farahmand, F., Ward, R.: Heart sounds separation from lung sounds using independent component analysis. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2736–2739 (2006). IEEE Pourazad, M., Moussavi, Z., Farahmand, F., Ward, R.: Heart sounds separation from lung sounds using independent component analysis. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2736–2739 (2006). IEEE
57.
go back to reference Smith, P.J.: A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician 49(2), 217–218 (1995)MathSciNet Smith, P.J.: A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician 49(2), 217–218 (1995)MathSciNet
58.
go back to reference Speicher, R.: Multiplicative functions on the lattice of non-crossing partitions and free convolution. Mathematische Annalen 298(1), 611–628 (1994)MathSciNetCrossRefMATH Speicher, R.: Multiplicative functions on the lattice of non-crossing partitions and free convolution. Mathematische Annalen 298(1), 611–628 (1994)MathSciNetCrossRefMATH
60.
go back to reference Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, i. Communications in mathematical physics 155(1), 71–92 (1993)MathSciNetCrossRefMATH Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, i. Communications in mathematical physics 155(1), 71–92 (1993)MathSciNetCrossRefMATH
61.
go back to reference Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, ii. Inventiones mathematicae 118(1), 411–440 (1994)MathSciNetCrossRefMATH Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, ii. Inventiones mathematicae 118(1), 411–440 (1994)MathSciNetCrossRefMATH
62.
go back to reference Voiculescu, D.: Operations on certain non-commutative operator-valued random variables, in recent advances in operator algebras. Astérisque 232, 243–275 (1995)MATH Voiculescu, D.: Operations on certain non-commutative operator-valued random variables, in recent advances in operator algebras. Astérisque 232, 243–275 (1995)MATH
63.
go back to reference Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, iv: maximum entropy and freeness, in free probability theory. Fields Inst. Commun. 12, 293–302 (1997)MATH Voiculescu, D.: The analogues of entropy and of fisher’s information measure in free probability theory, iv: maximum entropy and freeness, in free probability theory. Fields Inst. Commun. 12, 293–302 (1997)MATH
Metadata
Title
Free Component Analysis: Theory, Algorithms and Applications
Authors
Raj Rao Nadakuditi
Hao Wu
Publication date
11-04-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 3/2023
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09564-w

Premium Partner