Skip to main content
Top

2025 | OriginalPaper | Chapter

4. Free Surface Singularities: From Singular Points to Spatio-Temporal Complexity

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter explores the fascinating realm of free surface singularities, focusing on both time-dependent and persistent phenomena. It begins by classifying singularities into time-dependent, such as the breakup of a fluid drop, and time-independent, like the caustic lines observed in a coffee cup. The text delves into the dynamics of these singularities, highlighting how they organize the surrounding behavior and exhibit universal properties. It discusses the formation of drops, the coalescence of fluids, and the development of shock waves, illustrating the rich variety of singularities and their underlying mechanisms. The chapter also examines the concept of self-similarity, where the structure of a singularity remains invariant under scaling transformations, and explores the conditions under which this property holds. It further investigates the stability of similarity solutions, revealing how small perturbations can lead to complex, time-dependent behaviors. The text also touches on the eikonal equation and its role in describing wavefront dynamics, including the formation of caustics and the application of catastrophe theory to classify optical singularities. Additionally, it discusses the transition from one-dimensional to multi-dimensional singularities, highlighting the conditions under which pointlike or quasi-one-dimensional behaviors emerge. The chapter concludes by tying together these concepts to describe the spatial and temporal complexity observed in turbulent systems, providing a comprehensive overview of the emergent behaviors and universal properties of free surface singularities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
go back to reference Aarts, D. G., Lekkerkerker, H. N., Guo, H., Wegdam, G. H., & Bonn, D. (2005). Hydrodynamics of droplet coalescence. Physical Review Letters, 95, 164503. Aarts, D. G., Lekkerkerker, H. N., Guo, H., Wegdam, G. H., & Bonn, D. (2005). Hydrodynamics of droplet coalescence. Physical Review Letters, 95, 164503.
go back to reference Bertozzi, A. L., & Pugh, M. C. (1994). The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut off of van der Waals interactions. Nonlinearity, 7, 1535–1564. Bertozzi, A. L., & Pugh, M. C. (1994). The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut off of van der Waals interactions. Nonlinearity, 7, 1535–1564.
go back to reference Bertozzi, A. L., Brenner, M. P., Dupont, T. F., & Kadanoff, L. P. (1994). Singularities and similarities in interface flows. In L. Sirovich (Ed.), Trends and perspectives in applied mathematics, volume 100 of applied mathematical sciences (p. 155). Springer. Bertozzi, A. L., Brenner, M. P., Dupont, T. F., & Kadanoff, L. P. (1994). Singularities and similarities in interface flows. In L. Sirovich (Ed.), Trends and perspectives in applied mathematics, volume 100 of applied mathematical sciences (p. 155). Springer.
go back to reference Blossey, R. (2012). Thin liquid films. Springer. Blossey, R. (2012). Thin liquid films. Springer.
go back to reference Burton, J. C., Rutledge, J. E., & Taborek, P. (2004). Fluid pinch-off dynamics at nanometer length scales. Physical Review Letters, 92, 244505. Burton, J. C., Rutledge, J. E., & Taborek, P. (2004). Fluid pinch-off dynamics at nanometer length scales. Physical Review Letters, 92, 244505.
go back to reference Choptuik, M. W. (1993). Universality and scaling in gravitational collapse of a massless scalar field. Physical Review Letters, 70, 9–12. Choptuik, M. W. (1993). Universality and scaling in gravitational collapse of a massless scalar field. Physical Review Letters, 70, 9–12.
go back to reference Courrech du Pont, S., & Eggers, J. (2006). Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Physical Review Letters, 96, 034501. Courrech du Pont, S., & Eggers, J. (2006). Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Physical Review Letters, 96, 034501.
go back to reference Courrech du Pont, S., & Eggers, J. (2020). Fluid interfaces with very sharp tips in viscous flow. PNAS, 117, 32238. Courrech du Pont, S., & Eggers, J. (2020). Fluid interfaces with very sharp tips in viscous flow. PNAS, 117, 32238.
go back to reference Craster, R. V., & Matar, O. K. (2009). Dynamics and stability of thin liquid films. Reviews of Modern Physics, 81, 1131–1198. Craster, R. V., & Matar, O. K. (2009). Dynamics and stability of thin liquid films. Reviews of Modern Physics, 81, 1131–1198.
go back to reference Dallaston, M. C., Fontelos, M. A., Herrada, M. A., Lopez-Herrera, J. M., & Eggers, J. (2021). Regular and complex singularities of the generalized thin film equation in two dimensions. Journal of Fluid Mechanics, 917, A20. Dallaston, M. C., Fontelos, M. A., Herrada, M. A., Lopez-Herrera, J. M., & Eggers, J. (2021). Regular and complex singularities of the generalized thin film equation in two dimensions. Journal of Fluid Mechanics, 917, A20.
go back to reference Dallaston, M. C., Tseluiko, D., Zheng, Z., Fontelos, M. A., & Kalliadasis, S. (2017). Self-similar finite- time singularity formation in degenerate parabolic equations arising in thin-film flows. Nonlinearity, 30, 2647–2666. Dallaston, M. C., Tseluiko, D., Zheng, Z., Fontelos, M. A., & Kalliadasis, S. (2017). Self-similar finite- time singularity formation in degenerate parabolic equations arising in thin-film flows. Nonlinearity, 30, 2647–2666.
go back to reference Dallaston, M. C., Zhao, C., Sprittles, J. E., & Eggers, J. (2021). Stability of similarity solutions of viscous thread pinch-off. Physical Review Fluids, 6, 104004. Dallaston, M. C., Zhao, C., Sprittles, J. E., & Eggers, J. (2021). Stability of similarity solutions of viscous thread pinch-off. Physical Review Fluids, 6, 104004.
go back to reference Dimotakis, P. E. (2000). The mixing transition in turbulent flows. Journal of Fluid Mechanics, 409, 69–98. Dimotakis, P. E. (2000). The mixing transition in turbulent flows. Journal of Fluid Mechanics, 409, 69–98.
go back to reference Dong, J., Meissner, M., Faers, M. A., Eggers, J., Seddon, A. M., & Royall, C. P. (2018). Opposed flow focusing: evidence of a second order jetting transition. Soft Matter, 14, 8344. Dong, J., Meissner, M., Faers, M. A., Eggers, J., Seddon, A. M., & Royall, C. P. (2018). Opposed flow focusing: evidence of a second order jetting transition. Soft Matter, 14, 8344.
go back to reference Edgerton, H. E. (1977). Stopping time: the photographs of Harold Edgerton. Abrams. Edgerton, H. E. (1977). Stopping time: the photographs of Harold Edgerton. Abrams.
go back to reference Eggers, J. (2012). Stability of a viscous pinching thread. Physics of Fluids, 24, 072103. Eggers, J. (2012). Stability of a viscous pinching thread. Physics of Fluids, 24, 072103.
go back to reference Eggers, J., & Fontelos, M. A. (2015). Singularities: Formation, structure, and propagation. Cambridge University Press. Eggers, J., & Fontelos, M. A. (2015). Singularities: Formation, structure, and propagation. Cambridge University Press.
go back to reference Eggers, J., & Suramlishvili, N. (2017). Singularity theory of plane curves and its applications. European Journal of Mechanics B, 65, 107–131. Eggers, J., & Suramlishvili, N. (2017). Singularity theory of plane curves and its applications. European Journal of Mechanics B, 65, 107–131.
go back to reference Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71, 036601. Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71, 036601.
go back to reference Eggers, J., Fontelos, M. A., Leppinen, D., & Snoeijer, J. H. (2007). Theory of the collapsing axisymmetric cavity. Physical Review Letters, 98, 094502. Eggers, J., Fontelos, M. A., Leppinen, D., & Snoeijer, J. H. (2007). Theory of the collapsing axisymmetric cavity. Physical Review Letters, 98, 094502.
go back to reference Eggers, J., Lister, J. R., & Stone, H. A. (1999). Coalescence of liquid drops. Journal of Fluid Mechanics, 401, 293–310. Eggers, J., Lister, J. R., & Stone, H. A. (1999). Coalescence of liquid drops. Journal of Fluid Mechanics, 401, 293–310.
go back to reference Fontelos, M. A., & Wang, Q. (2021). Discrete selfsimilarity in the formation of satellites for viscous cavity break-up. Physical Review Fluids, 6, 013201. Fontelos, M. A., & Wang, Q. (2021). Discrete selfsimilarity in the formation of satellites for viscous cavity break-up. Physical Review Fluids, 6, 013201.
go back to reference Giga, Y., & Kohn, R. V. (1985). Asymptotically self-similar blow-up of seminlinear heat-equations. Communications on Pure and Applied Mathematics, 38, 297–319. Giga, Y., & Kohn, R. V. (1985). Asymptotically self-similar blow-up of seminlinear heat-equations. Communications on Pure and Applied Mathematics, 38, 297–319.
go back to reference Griffith, W. C., & Bleakney, W. (1954). Shock waves in gases. American Journal of Physics, 22, 597. Griffith, W. C., & Bleakney, W. (1954). Shock waves in gases. American Journal of Physics, 22, 597.
go back to reference Hohlfeld, E., & Mahadevan, L. (2011). Unfolding the sulcus. Physical Review Letters, 106, 105702. Hohlfeld, E., & Mahadevan, L. (2011). Unfolding the sulcus. Physical Review Letters, 106, 105702.
go back to reference Kaneelil, P. R., Pahlavan, A., Xue, N., & Stone, H. A. (2022). Three-dimensional self-similarity of coalescing viscous drops in the thin-film regime. Physical Review Letters, 129, 144501. Kaneelil, P. R., Pahlavan, A., Xue, N., & Stone, H. A. (2022). Three-dimensional self-similarity of coalescing viscous drops in the thin-film regime. Physical Review Letters, 129, 144501.
go back to reference Kitavtsev, G., Fontelos, M., & Eggers, J. (2018). Thermal rupture of a free liquid sheet. Journal of Fluid Mechanics, 840, 555. Kitavtsev, G., Fontelos, M., & Eggers, J. (2018). Thermal rupture of a free liquid sheet. Journal of Fluid Mechanics, 840, 555.
go back to reference Klopp, C., Trittel, T., & Stannarius, R. (2020). Self similarity of liquid droplet coalescence in a quasi-2d free-standing liquid-crystal film. Soft Matter, 16, 4607–4614. Klopp, C., Trittel, T., & Stannarius, R. (2020). Self similarity of liquid droplet coalescence in a quasi-2d free-standing liquid-crystal film. Soft Matter, 16, 4607–4614.
go back to reference Nye, J. (1999). Natural focusing and fine structure of light: Caustics and wave dislocations. Institute of Physics Publishing. Nye, J. (1999). Natural focusing and fine structure of light: Caustics and wave dislocations. Institute of Physics Publishing.
go back to reference Ockendon, J. R., Howison, S., Lacey, A., & Movvhan, A. (2003). Applied partial differential equations. Oxford University Press. Ockendon, J. R., Howison, S., Lacey, A., & Movvhan, A. (2003). Applied partial differential equations. Oxford University Press.
go back to reference Oron, A., Davis, S. H., & Bankoff, S. G. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69, 931–980. Oron, A., Davis, S. H., & Bankoff, S. G. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69, 931–980.
go back to reference Pantano, C., Gañán-Calvo, A. M., & Barrero, A. (1994). Zeroth order, electrohydrostatic solution for electrospraying in cone-jet mode. Journal of Aerosol Science, 25, 1065. Pantano, C., Gañán-Calvo, A. M., & Barrero, A. (1994). Zeroth order, electrohydrostatic solution for electrospraying in cone-jet mode. Journal of Aerosol Science, 25, 1065.
go back to reference Pumir, A., Shraiman, B. I., & Siggia, E. D. (1992). Vortex morphology and Kelvin’s theorem. Physical Review A, 45, R5351–R5354. Pumir, A., Shraiman, B. I., & Siggia, E. D. (1992). Vortex morphology and Kelvin’s theorem. Physical Review A, 45, R5351–R5354.
go back to reference Reyssat, E., Lorenceau, E., Restagno, F., & Quéré, D. (2008). Viscous jet drawing air into a bath. Physics of Fluids, 20, 091107. Reyssat, E., Lorenceau, E., Restagno, F., & Quéré, D. (2008). Viscous jet drawing air into a bath. Physics of Fluids, 20, 091107.
go back to reference Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London A, 146, 501. Taylor, G. I. (1934). The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London A, 146, 501.
go back to reference Tjahjadi, M., Stone, H. A., & Ottino, J. M. (1992). Satellite and subsatellite formation in capillary breakup. Journal of Fluid Mechanics, 243, 297. Tjahjadi, M., Stone, H. A., & Ottino, J. M. (1992). Satellite and subsatellite formation in capillary breakup. Journal of Fluid Mechanics, 243, 297.
go back to reference Witelski, T. P., & Bernoff, A. J. (2000). Dynamics of three-dimensional thin film rupture. Physica D, 147, 155–176. Witelski, T. P., & Bernoff, A. J. (2000). Dynamics of three-dimensional thin film rupture. Physica D, 147, 155–176.
go back to reference Zhang, W. W., & Lister, J. R. (1999). Similarity solutions for van der Waals rupture of thin film on a solid substrate. Physics of Fluids, 11, 2454–2462. Zhang, W. W., & Lister, J. R. (1999). Similarity solutions for van der Waals rupture of thin film on a solid substrate. Physics of Fluids, 11, 2454–2462.
Metadata
Title
Free Surface Singularities: From Singular Points to Spatio-Temporal Complexity
Author
Jens Eggers
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78764-5_4

Premium Partners