Skip to main content
Top
Published in: Microsystem Technologies 4/2020

03-10-2019 | Technical Paper

Frequency-selective electrokinetic manipulation of microparticles in gold nanofilm optically-induced dielectrophoretic device

Authors: Yue-Chang Tsai, Yong-Hang Hong, Sheng-Jie Zhang, Ju-Nan Kuo

Published in: Microsystem Technologies | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel optically-induced dielectrophoretic (ODEP) device incorporating a gold nanofilm is proposed for the manipulation of microparticles. The electrokinetic phenomena induced under different optical radial images are investigated both numerically and experimentally. The results show that the gold nanofilm not only extends the operating frequency of the ODEP device, but also prompts a change in the direction of the DEP force from the outward direction to the inward direction at high frequencies. Consequently, particle concentration can be achieved in the high frequency range. Overall, the proposed device provides a bi-directional and velocity/force-controllable approach for the manipulation of microparticles in ODEP applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372CrossRef Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372CrossRef
go back to reference Chiou CH, Pan JC, Chien LJ, Lin YY, Lin JL (2013) Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip. Sensors 13:2763–2776CrossRef Chiou CH, Pan JC, Chien LJ, Lin YY, Lin JL (2013) Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip. Sensors 13:2763–2776CrossRef
go back to reference Chiou CH, Chien LJ, Lin JL, Kuo JN (2016) Novel electrodeless-dielectrophoresis device for nanoparticle trapping using three-dimensional inverted-pyramid arrays. Appl Phys Express 9:057001CrossRef Chiou CH, Chien LJ, Lin JL, Kuo JN (2016) Novel electrodeless-dielectrophoresis device for nanoparticle trapping using three-dimensional inverted-pyramid arrays. Appl Phys Express 9:057001CrossRef
go back to reference Chu PY, Liao CJ, Hsieh CH, Wang HM, Chou WP, Chen PH, Wu MH (2019) Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sensor Actuat B Chem 283:621–631CrossRef Chu PY, Liao CJ, Hsieh CH, Wang HM, Chou WP, Chen PH, Wu MH (2019) Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sensor Actuat B Chem 283:621–631CrossRef
go back to reference Esseling M, Glasener S, Volonteri F, Denz C (2012) Opto-electric particle manipulation on a bismuth silicon oxide crystal. Appl Phys Lett 100:161903CrossRef Esseling M, Glasener S, Volonteri F, Denz C (2012) Opto-electric particle manipulation on a bismuth silicon oxide crystal. Appl Phys Lett 100:161903CrossRef
go back to reference Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92:22–42CrossRef Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92:22–42CrossRef
go back to reference Gennari O, Grilli S, Coppola S, Pagliarulo V, Vespini V, Coppola G, Bhowmick S, Gioffré MA, Gentile G, Ambrogi V, Cerruti P, Carfagna C, Ferraro P (2013) Spontaneous assembly of carbon-based chains in polymer matrixes through surface charge templates. Langmuir 29:15503–15510CrossRef Gennari O, Grilli S, Coppola S, Pagliarulo V, Vespini V, Coppola G, Bhowmick S, Gioffré MA, Gentile G, Ambrogi V, Cerruti P, Carfagna C, Ferraro P (2013) Spontaneous assembly of carbon-based chains in polymer matrixes through surface charge templates. Langmuir 29:15503–15510CrossRef
go back to reference Grilli S, Ferraro P (2008) Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl Phys Lett 92:232902CrossRef Grilli S, Ferraro P (2008) Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl Phys Lett 92:232902CrossRef
go back to reference Grilli S, Coppola S, Nasti G, Vespini V, Gentile G, Ambrogi V, Carfagna C, Ferraro P (2014) Hybrid ferroelectric-polymer microfluidic device for dielectrophoretic self-assembling of nanoparticles. RSC Adv 4:2851–2857CrossRef Grilli S, Coppola S, Nasti G, Vespini V, Gentile G, Ambrogi V, Carfagna C, Ferraro P (2014) Hybrid ferroelectric-polymer microfluidic device for dielectrophoretic self-assembling of nanoparticles. RSC Adv 4:2851–2857CrossRef
go back to reference Huang Y, Yang JM, Hopkins PJ, Kassegne S, Tirado M, Forster AH, Reese H (2003) Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomed Microdevices 5:217225CrossRef Huang Y, Yang JM, Hopkins PJ, Kassegne S, Tirado M, Forster AH, Reese H (2003) Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomed Microdevices 5:217225CrossRef
go back to reference Huang SB, Liu SL, Li JT, Wu MH (2014) Label-free live and dead cell separation method using a high-efficiency Optically-Induced Dielectrophoretic (ODEP) force-based microfluidic platform. Int J Autom Smart Technol 4:83–91CrossRef Huang SB, Liu SL, Li JT, Wu MH (2014) Label-free live and dead cell separation method using a high-efficiency Optically-Induced Dielectrophoretic (ODEP) force-based microfluidic platform. Int J Autom Smart Technol 4:83–91CrossRef
go back to reference Hughes MP, Pethig R, Wang XB (1996) Dielectrophoretic forces on particle in traveling electric fields. J Phys D Appl Phys 29:474–482CrossRef Hughes MP, Pethig R, Wang XB (1996) Dielectrophoretic forces on particle in traveling electric fields. J Phys D Appl Phys 29:474–482CrossRef
go back to reference Hwang H, Choi YJ, Choi W, Kim SH, Jang J, Park JK (2008) Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system. Electrophoresis 29:1203–1212CrossRef Hwang H, Choi YJ, Choi W, Kim SH, Jang J, Park JK (2008) Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system. Electrophoresis 29:1203–1212CrossRef
go back to reference Hwang H, Lee DH, Choi W, Park JK (2009) Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics 3:014103CrossRef Hwang H, Lee DH, Choi W, Park JK (2009) Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics 3:014103CrossRef
go back to reference Jager EWH, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338CrossRef Jager EWH, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338CrossRef
go back to reference Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou PY, Chou J, Yang P, Wu MC (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–89CrossRef Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou PY, Chou J, Yang P, Wu MC (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–89CrossRef
go back to reference Jamshidi A, Neale SL, Yu K, Pauzauskie PJ, Schuck PJ, Valley JK, Hsu HY, Ohta AT, Wu MC (2009) Nanopen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano Lett 9(8):2921–2925CrossRef Jamshidi A, Neale SL, Yu K, Pauzauskie PJ, Schuck PJ, Valley JK, Hsu HY, Ohta AT, Wu MC (2009) Nanopen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano Lett 9(8):2921–2925CrossRef
go back to reference Krupke R, Hennrich F, Lohneysen V, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRef Krupke R, Hennrich F, Lohneysen V, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRef
go back to reference Lu YS, Huang YP, Yeh JA, Lee CK (2006) Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP). Opt Quantum Electron 37:1385–1395CrossRef Lu YS, Huang YP, Yeh JA, Lee CK (2006) Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP). Opt Quantum Electron 37:1385–1395CrossRef
go back to reference Mello AJde, Beard N (2003) Focus. Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3:11N–19NCrossRef Mello AJde, Beard N (2003) Focus. Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3:11N–19NCrossRef
go back to reference Merola F, Grilli S, Coppola S, Vespini V, Nicola SD, Maddalena P, Carfagna C, Ferraro P (2012) Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv Funct Mater 22:3267–3272CrossRef Merola F, Grilli S, Coppola S, Vespini V, Nicola SD, Maddalena P, Carfagna C, Ferraro P (2012) Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv Funct Mater 22:3267–3272CrossRef
go back to reference Miccio L, Memmolo P, Grilli S, Ferraro P (2012) All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning. Lab Chip 12:4449–4454CrossRef Miccio L, Memmolo P, Grilli S, Ferraro P (2012) All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning. Lab Chip 12:4449–4454CrossRef
go back to reference Miccio L, Marchesano V, Mugnano M, Grilli S, Ferraro P (2016) Light induced DEP for immobilizing and orienting Escherichia coli bacteria. Opt Lasers Eng 76:34–39CrossRef Miccio L, Marchesano V, Mugnano M, Grilli S, Ferraro P (2016) Light induced DEP for immobilizing and orienting Escherichia coli bacteria. Opt Lasers Eng 76:34–39CrossRef
go back to reference Mishra A, Kwon JS, Thakur R, Wereley S (2014) Optoelectrical microfluidics as a promising tool in biology. Trends Biotechnol 32(8):414–421CrossRef Mishra A, Kwon JS, Thakur R, Wereley S (2014) Optoelectrical microfluidics as a promising tool in biology. Trends Biotechnol 32(8):414–421CrossRef
go back to reference Muñoz-Martínez JF, Ramiro JB, Alcázar A, García-Cabañes A, Carrascosa M (2017) Electrophoretic vs. dielectrophoretic nanoparticle patterning using optoelectronic tweezers. Phys Rev Appl 7:064027CrossRef Muñoz-Martínez JF, Ramiro JB, Alcázar A, García-Cabañes A, Carrascosa M (2017) Electrophoretic vs. dielectrophoretic nanoparticle patterning using optoelectronic tweezers. Phys Rev Appl 7:064027CrossRef
go back to reference Nasti G, Coppola S, Olivieri F, Vespini V, Pagliarulo V, Ferraro P (2018) On the complex and reversible pathways of CdSe quantum dots driven by pyroelectric-dielectrophoresis. Langmuir 34:2198–2204CrossRef Nasti G, Coppola S, Olivieri F, Vespini V, Pagliarulo V, Ferraro P (2018) On the complex and reversible pathways of CdSe quantum dots driven by pyroelectric-dielectrophoresis. Langmuir 34:2198–2204CrossRef
go back to reference Nguyen NT (2012) Special issue on magnetic-based microfluidics. Microfluid Nanofluid 13:527–528CrossRef Nguyen NT (2012) Special issue on magnetic-based microfluidics. Microfluid Nanofluid 13:527–528CrossRef
go back to reference Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10):426–432CrossRef Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10):426–432CrossRef
go back to reference Shi J, Huang H, Stratto Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359CrossRef Shi J, Huang H, Stratto Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359CrossRef
go back to reference Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8(1):425–454CrossRef Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8(1):425–454CrossRef
go back to reference Wang W, Lin YH, Wen TC, Guo TF, Lee GB (2010) Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl Phys Lett 96:113302CrossRef Wang W, Lin YH, Wen TC, Guo TF, Lee GB (2010) Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl Phys Lett 96:113302CrossRef
go back to reference Wang KC, Kumar A, Williams SJ, Green NG, Kim KC, Chuang HS (2014) An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab Chip 14:3958–3967CrossRef Wang KC, Kumar A, Williams SJ, Green NG, Kim KC, Chuang HS (2014) An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab Chip 14:3958–3967CrossRef
go back to reference Yang SM, Yu TM, Huang HP, Ku MY, Hsu L, Liu CH (2010) Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt Lett 35:1959–1961CrossRef Yang SM, Yu TM, Huang HP, Ku MY, Hsu L, Liu CH (2010) Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt Lett 35:1959–1961CrossRef
go back to reference Zhang S, Shakiba N, Chen Y, Zhang Y, Tian P, Singh J, Chamberlain MD, Satkauskas M, Flood AG, Kherani NP, Yu S, Zandstra PW, Wheeler AR (2018) Patterned optoelectronic tweezers: a new scheme for selecting, moving, and storing dielectric particles and cells. Small 14(45):1803342CrossRef Zhang S, Shakiba N, Chen Y, Zhang Y, Tian P, Singh J, Chamberlain MD, Satkauskas M, Flood AG, Kherani NP, Yu S, Zandstra PW, Wheeler AR (2018) Patterned optoelectronic tweezers: a new scheme for selecting, moving, and storing dielectric particles and cells. Small 14(45):1803342CrossRef
Metadata
Title
Frequency-selective electrokinetic manipulation of microparticles in gold nanofilm optically-induced dielectrophoretic device
Authors
Yue-Chang Tsai
Yong-Hang Hong
Sheng-Jie Zhang
Ju-Nan Kuo
Publication date
03-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4/2020
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04651-5

Other articles of this Issue 4/2020

Microsystem Technologies 4/2020 Go to the issue