Skip to main content
Top

2022 | OriginalPaper | Chapter

Friction, Wear and Emission in Brakes

Authors : Georg-Peter Ostermeyer, Jacek Kijanski

Published in: 12th International Munich Chassis Symposium 2021

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Brakes are tribological high-load contacts. Such contacts are characterized by the fact that the wear provides material in the friction contact, which can generate additional tribologically active contact surfaces there. In addition to the natural contact areas, wear dust in the boundary layer forms temporary contact areas. These contribute significantly to the resulting friction power.
Over the last 20 years, scientific research has focused on the dynamics generated by wear in the boundary layer. The growth and destruction of the local contact areas formed by wear dust have been successfully used to explain time-variant effects. Thus, dynamic friction laws have been developed along with spatially resolved simulations that reflect the evolutions of surface geometry very precisely.
Following investigations into friction dynamics, the demand for time-resolved predictions of wear, and in particular the wear dust load during braking is becoming increasingly important. For the description of brake dust loads, we have now set up highly automated high-precision optical measurements combined with a certificated particulate matter measurement system (TSI EEPS 3090) and several low-cost particulate matter sensors, which investigate wear and wear dust emission during braking over long periods of time. These measurements have shown that the wear and particle emission intensity also has its own time dynamics. The wear dust moves in the boundary layer between pad and disc. It is not only originally responsible for the construction of contact patches, but also fills reservoirs near the surface in various ways. The cavities are filled once and then emptied again. These reservoir dynamics seem to be characteristic for the output of wear dust in high load contacts in transient operation and modulates not only the friction coefficient but also the wear intensity in the friction contact.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
All friction applications shown here operate in an average temperature range of 22 ℃ to 50 ℃ at the maximum on the specimen, which roughly corresponds to the temperature range of conventional braking systems in battery electric vehicles [16].
 
Literature
1.
go back to reference Eriksson M, Bergmann F, Jacobson S (2002) On the nature of tribological contact in automotive brakes. Wear 252:26–36CrossRef Eriksson M, Bergmann F, Jacobson S (2002) On the nature of tribological contact in automotive brakes. Wear 252:26–36CrossRef
2.
go back to reference Ostermeyer G-P (2003) On the dynamics of the friction coefficient. Wear 254:852–858CrossRef Ostermeyer G-P (2003) On the dynamics of the friction coefficient. Wear 254:852–858CrossRef
5.
go back to reference Ostermeyer G-P, Schramm T, Raczek S, Bubser F, Perzborn N (2015) “The automated universal tribotester”, EuroBrake, Dresden, EB2015-STQ-016 Ostermeyer G-P, Schramm T, Raczek S, Bubser F, Perzborn N (2015) “The automated universal tribotester”, EuroBrake, Dresden, EB2015-STQ-016
7.
go back to reference Tiedemann M, Kijanski J, Otto J, Ostermeyer G-P (2020) “Prediction of brake pad wear in battery-electric vehicles”. ATZ worldwide, No. 06.2020 Tiedemann M, Kijanski J, Otto J, Ostermeyer G-P (2020) “Prediction of brake pad wear in battery-electric vehicles”. ATZ worldwide, No. 06.2020
8.
go back to reference Vogel A, Ostermeyer G-P (2020) “On self-adjusting contacts in Pin-On-Disk testers”. EuroBrake, Barcelona, EB2020-STP-044 Vogel A, Ostermeyer G-P (2020) “On self-adjusting contacts in Pin-On-Disk testers”. EuroBrake, Barcelona, EB2020-STP-044
9.
go back to reference Ostermeyer G-P, Kijanski J (2019) “Surface reservoir dynamics in friction interfaces”. EuroBrake, Dresden, EB2019-FBR-022 Ostermeyer G-P, Kijanski J (2019) “Surface reservoir dynamics in friction interfaces”. EuroBrake, Dresden, EB2019-FBR-022
10.
go back to reference Schramm T, Ostermeyer G-P (2016) “Automated brake pad surface topography measurement using the AUT”. EuroBrake, Milan, EB2016-SVM-023 Schramm T, Ostermeyer G-P (2016) “Automated brake pad surface topography measurement using the AUT”. EuroBrake, Milan, EB2016-SVM-023
11.
go back to reference Ostermeyer G-P, Kwade A, Sandgaard M, et al. (2020) “Measurement of dynamic signature of brake emissions on a Pin-On-Disc tribotester with low-cost particulate sensors”. EuroBrake, Barcelona, EB2020-EBS-029 Ostermeyer G-P, Kwade A, Sandgaard M, et al. (2020) “Measurement of dynamic signature of brake emissions on a Pin-On-Disc tribotester with low-cost particulate sensors”. EuroBrake, Barcelona, EB2020-EBS-029
14.
go back to reference Archard JF (1961) Single contacts and multiple encounters. J Appl Phy 32(8):1420–1425 CrossRef Archard JF (1961) Single contacts and multiple encounters. J Appl Phy 32(8):1420–1425 CrossRef
15.
go back to reference Archard JF (1953) Contact and rubbing on flat surfaces. J Appl Phys 24(8):981–988CrossRef Archard JF (1953) Contact and rubbing on flat surfaces. J Appl Phys 24(8):981–988CrossRef
16.
go back to reference Bode K, Tiedemann M (2017) „Radbremsen in E-Fahrzeugen: Potenziale und Herausforderungen“. ATZ – Automobiltechnische Zeitschrift, Ausgabe 6.2017 Bode K, Tiedemann M (2017) „Radbremsen in E-Fahrzeugen: Potenziale und Herausforderungen“. ATZ – Automobiltechnische Zeitschrift, Ausgabe 6.2017
18.
go back to reference Kijanski J, Ostermeyer G-P (2021) „A comparison between stationary and dynamic wear tests of brake pads”. EuroBrake, Online-Conference, EB2021-FBR-001. tba Kijanski J, Ostermeyer G-P (2021) „A comparison between stationary and dynamic wear tests of brake pads”. EuroBrake, Online-Conference, EB2021-FBR-001. tba
19.
go back to reference Ostermeyer G-P, Merlis JH (2018) Modeling the friction boundary layer of an entire brake pad with an abstract cellular automaton. Lubricants 6:44CrossRef Ostermeyer G-P, Merlis JH (2018) Modeling the friction boundary layer of an entire brake pad with an abstract cellular automaton. Lubricants 6:44CrossRef
Metadata
Title
Friction, Wear and Emission in Brakes
Authors
Georg-Peter Ostermeyer
Jacek Kijanski
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64550-5_30