Skip to main content
Top

2019 | OriginalPaper | Chapter

11. From Big Data to Smart Data – Problemfelder der systematischen Nutzung von Daten in Unternehmen

Authors : Steffen Wölfl, Alexander Leischnig, Björn Ivens, Daniel Hein

Published in: Geschäftsmodelle in der digitalen Welt

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Die zunehmende Digitalisierung von Geschäftsprozessen, Leistungen oder sogar ganzen Geschäftsmodellen bietet Unternehmen vielfältige Möglichkeiten zur Wertgenerierung mit Daten. Die zielgerichtete und systematische Verarbeitung und Nutzung von Daten stellt Unternehmen verschiedener Branchen jedoch vor große Herausforderungen. Der vorliegende Beitrag gibt einen Überblick über grundlegende Prozesse der systematischen Verarbeitung und Nutzung von Daten in Unternehmen. Darüber hinaus diskutiert der Beitrag mögliche Problemfelder, die bei der Nutzung von Daten entstehen können und gibt Handlungsempfehlungen, wie Unternehmen diese Herausforderungen bewältigen können.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: cognitive absorption and beliefs about information technology usage. MIS Quarterly, 29(4), 665–694. Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: cognitive absorption and beliefs about information technology usage. MIS Quarterly, 29(4), 665–694.
go back to reference Akter S., Wamba S. F., Gunasekaran A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment?. International Journal of Production Economics, 18(2), 113–131. Akter S., Wamba S. F., Gunasekaran A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment?. International Journal of Production Economics, 18(2), 113–131.
go back to reference Alavi, M., & Leidner, D. E. (2001). Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136. Alavi, M., & Leidner, D. E. (2001). Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136.
go back to reference Audzeyeva A., & Hudson, R. (2016). How to get the most from a business intelligence application during the post implementation phase? Deep structure transformation at a U.K. retail bank. European Journal of Information Systems, 25(1), 29–46. Audzeyeva A., & Hudson, R. (2016). How to get the most from a business intelligence application during the post implementation phase? Deep structure transformation at a U.K. retail bank. European Journal of Information Systems, 25(1), 29–46.
go back to reference Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78–83. Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78–83.
go back to reference Barua, A., Konana, P., Whinston, A. B., & Yin, F. (2004). An empirical investigation of net-enabled business value. MIS Quarterly, 28(4), 585–620. Barua, A., Konana, P., Whinston, A. B., & Yin, F. (2004). An empirical investigation of net-enabled business value. MIS Quarterly, 28(4), 585–620.
go back to reference Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise. Communications of the ACM, 51(9), 72–79. Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise. Communications of the ACM, 51(9), 72–79.
go back to reference Bhatt, G. D. (2000). An empirical examination of the effects of information systems integration on business process improvement. International Journal of Operations & Production Management, 20(11), 1331–1359.CrossRef Bhatt, G. D. (2000). An empirical examination of the effects of information systems integration on business process improvement. International Journal of Operations & Production Management, 20(11), 1331–1359.CrossRef
go back to reference Bischoff, S., Aier, S., Haki, M. K., & Winter, R. (2015). Understanding continuous use of business intelligence systems: a mixed methods investigation. JITTA: Journal of Information Technology Theory and Application, 16(2), 5–38. Bischoff, S., Aier, S., Haki, M. K., & Winter, R. (2015). Understanding continuous use of business intelligence systems: a mixed methods investigation. JITTA: Journal of Information Technology Theory and Application, 16(2), 5–38.
go back to reference Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‚big data‘?. McKinsey Quarterly, 4(1), 24–35. Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‚big data‘?. McKinsey Quarterly, 4(1), 24–35.
go back to reference Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347.
go back to reference Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4–39. Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4–39.
go back to reference Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly, 36(4), 1165–1188. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly, 36(4), 1165–1188.
go back to reference Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866–883. Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866–883.
go back to reference Choo, C. W., Bergeron, P., Detlor, B., & Heaton, L. (2008). Information culture and information use: an exploratory study of three organizations. Journal of the Association for Information Science and Technology, 59(5), 792–804. Choo, C. W., Bergeron, P., Detlor, B., & Heaton, L. (2008). Information culture and information use: an exploratory study of three organizations. Journal of the Association for Information Science and Technology, 59(5), 792–804.
go back to reference Clarke, R. (2016). Big data, big risks. Information Systems Journal, 26(1), 77–90.CrossRef Clarke, R. (2016). Big data, big risks. Information Systems Journal, 26(1), 77–90.CrossRef
go back to reference Cress, U., Kimmerle, J., Hesse, F. W. (2006). Information exchange with shared databases as a social dilemma: the effect of metaknowledge, Bonus Systems, and Costs. Communication Research, 33(5), 370–390.CrossRef Cress, U., Kimmerle, J., Hesse, F. W. (2006). Information exchange with shared databases as a social dilemma: the effect of metaknowledge, Bonus Systems, and Costs. Communication Research, 33(5), 370–390.CrossRef
go back to reference Davenport, T. H. & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Boston: Harvard Business School Press. Davenport, T. H. & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Boston: Harvard Business School Press.
go back to reference Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.CrossRef Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.CrossRef
go back to reference De Luca, L. M. D., & Atuahene-Gima, K. (2007). Market knowledge dimensions and cross-functional collaboration: examining the different routes to product innovation performance. Journal of Marketing, 71(1), 95–112. De Luca, L. M. D., & Atuahene-Gima, K. (2007). Market knowledge dimensions and cross-functional collaboration: examining the different routes to product innovation performance. Journal of Marketing, 71(1), 95–112.
go back to reference Dobre, C., & Xhafa, F. (2014). Intelligent services for big data science. Future Generation Computer Systems, 37, 267–281. Dobre, C., & Xhafa, F. (2014). Intelligent services for big data science. Future Generation Computer Systems, 37, 267–281.
go back to reference Duan, Y., & Cao, G. (2015). Understanding the impact of business analytics on innovation. Proceedings of the 23rd European Conference on Information Systems, Muenster, Germany. Duan, Y., & Cao, G. (2015). Understanding the impact of business analytics on innovation. Proceedings of the 23rd European Conference on Information Systems, Muenster, Germany.
go back to reference Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2): 897–904. Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2): 897–904.
go back to reference Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K. (2017). Data analytics competency for improving firm decision making performance. Journal of Strategic Information Systems, in press. Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K. (2017). Data analytics competency for improving firm decision making performance. Journal of Strategic Information Systems, in press.
go back to reference Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1): 185–214. Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1): 185–214.
go back to reference Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information and Management, 53(8): 1049–1064. Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information and Management, 53(8): 1049–1064.
go back to reference Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.
go back to reference Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80. Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80.
go back to reference He, J & King, W. R. (2008). The role of user participation in information systems development: implications from a meta-analysis. Journal of Management Information Systems, 25(1), 301–331. He, J & King, W. R. (2008). The role of user participation in information systems development: implications from a meta-analysis. Journal of Management Information Systems, 25(1), 301–331.
go back to reference Hitt, L., Jin, F., & Wu, L. (2015). Data skills and value of social media: evidence from large-sample firm value analysis. Proceedings of the 36th International Conference on Information Systems, Fort Worth, TX. Hitt, L., Jin, F., & Wu, L. (2015). Data skills and value of social media: evidence from large-sample firm value analysis. Proceedings of the 36th International Conference on Information Systems, Fort Worth, TX.
go back to reference Jayachandran, S., Sharma, S., Kaufman, P., & Raman, P. (2005). The role of relational information processes and technology use in customer relationship management. Journal of Marketing, 69(4), 177–192. Jayachandran, S., Sharma, S., Kaufman, P., & Raman, P. (2005). The role of relational information processes and technology use in customer relationship management. Journal of Marketing, 69(4), 177–192.
go back to reference Kautz, K., & Mahnke, V. (2003). Value creation through IT-supported knowledge management? The utilisation of a knowledge management system in a global consulting company. Informing Science, 6, 75–88. Kautz, K., & Mahnke, V. (2003). Value creation through IT-supported knowledge management? The utilisation of a knowledge management system in a global consulting company. Informing Science, 6, 75–88.
go back to reference Kettinger, W. J., & Marchand, D. A. (2011). Information management practices (IMP) from the senior manager’s perspective: an investigation of the IMP construct and its measurement. Information Systems Journal, 21(5), 385–406. Kettinger, W. J., & Marchand, D. A. (2011). Information management practices (IMP) from the senior manager’s perspective: an investigation of the IMP construct and its measurement. Information Systems Journal, 21(5), 385–406.
go back to reference Kettinger, W. J., Zhang, C., & Chang, K. C. (2013). Research note – A view from the top: integrated information delivery and effective information use from the senior executive’s perspective. Information Systems Research, 24(3), 842–860. Kettinger, W. J., Zhang, C., & Chang, K. C. (2013). Research note – A view from the top: integrated information delivery and effective information use from the senior executive’s perspective. Information Systems Research, 24(3), 842–860.
go back to reference Klein, R. & Rai, A. (2009). Interfirm strategic information flows in logistics supply chain relationships. MIS Quarterly, 33(4), 735–762. Klein, R. & Rai, A. (2009). Interfirm strategic information flows in logistics supply chain relationships. MIS Quarterly, 33(4), 735–762.
go back to reference Kohli, A. K., & Jaworski, B. J. (1990). Market orientation: the construct, research propositions, and managerial implications. Journal of Marketing, 54(2), 1–18. Kohli, A. K., & Jaworski, B. J. (1990). Market orientation: the construct, research propositions, and managerial implications. Journal of Marketing, 54(2), 1–18.
go back to reference LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. Sloan Management Review, 52(2), 21–31. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. Sloan Management Review, 52(2), 21–31.
go back to reference Leischnig, A., Wölfl, S., Ivens, B., & Hein, D. (2017). From digital business strategy to market performance: insights into key concepts and processes. Proceedings of the 38th International Conference on Information Systems, Seoul, South Korea. Leischnig, A., Wölfl, S., Ivens, B., & Hein, D. (2017). From digital business strategy to market performance: insights into key concepts and processes. Proceedings of the 38th International Conference on Information Systems, Seoul, South Korea.
go back to reference Li, G., Lin, Y., Wang, S., & Yan, H. (2006). Enhancing agility by timely sharing of supply information. Supply Chain Management: An International Journal, 11(5), 425–435. Li, G., Lin, Y., Wang, S., & Yan, H. (2006). Enhancing agility by timely sharing of supply information. Supply Chain Management: An International Journal, 11(5), 425–435.
go back to reference Lycett, M. (2013). ‚Datafication‘: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381–386.CrossRef Lycett, M. (2013). ‚Datafication‘: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381–386.CrossRef
go back to reference Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and organizational performance: an integrative model of IT business value. MIS Quarterly, 28(2), 283–322. Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and organizational performance: an integrative model of IT business value. MIS Quarterly, 28(2), 283–322.
go back to reference Menon, A., & Varadarajan, P. R. (1992). A model of marketing knowledge use within firms. Journal of Marketing, 56(4), 53–71. Menon, A., & Varadarajan, P. R. (1992). A model of marketing knowledge use within firms. Journal of Marketing, 56(4), 53–71.
go back to reference Moorman, C. (1995). Organizational market information processes: cultural antecedents and new product outcomes. Journal of Marketing Research, 32(3), 318–335.CrossRef Moorman, C. (1995). Organizational market information processes: cultural antecedents and new product outcomes. Journal of Marketing Research, 32(3), 318–335.CrossRef
go back to reference Morgan, N. A., Anderson, E. W., & Mittal, V. (2005). Understanding firms’ customer satisfaction information usage. Journal of Marketing, 69(3), 131–151. Morgan, N. A., Anderson, E. W., & Mittal, V. (2005). Understanding firms’ customer satisfaction information usage. Journal of Marketing, 69(3), 131–151.
go back to reference Otto, B. (2011). Organizing data governance: findings from the telecommunications industry and consequences for large service providers. Communications of the Association for Information Systems, 29(1), 45–66. Otto, B. (2011). Organizing data governance: findings from the telecommunications industry and consequences for large service providers. Communications of the Association for Information Systems, 29(1), 45–66.
go back to reference Phillips-Wren, G. E., & Hoskisson, A. (2014). Decision support with big data: a case study in the hospitality industry. Decision Support Systems, 2, 401–413. Phillips-Wren, G. E., & Hoskisson, A. (2014). Decision support with big data: a case study in the hospitality industry. Decision Support Systems, 2, 401–413.
go back to reference Reid, F. J. M., Malinek, V., Stott, C. J. T., & Evans, J. B. T. (1996). The messaging threshold in computer-mediated communication. Ergonomics, 39, 1017–1037. Reid, F. J. M., Malinek, V., Stott, C. J. T., & Evans, J. B. T. (1996). The messaging threshold in computer-mediated communication. Ergonomics, 39, 1017–1037.
go back to reference Ringel, M., Taylor, A., & Zablit, H. (2017). The most innovative companies 2016. Boston Consulting Group. Ringel, M., Taylor, A., & Zablit, H. (2017). The most innovative companies 2016. Boston Consulting Group.
go back to reference Roberts, N., & Grover, V. (2012). Leveraging information technology infrastructure to facilitate a firm’s customer agility and competitive activity: an empirical investigation. Journal of Management Information Systems, 28(4), 231–270. Roberts, N., & Grover, V. (2012). Leveraging information technology infrastructure to facilitate a firm’s customer agility and competitive activity: an empirical investigation. Journal of Management Information Systems, 28(4), 231–270.
go back to reference Rollins, M., & Halinen, A. (2005). Customer knowledge management competence: towards a theoretical framework. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Hawaii, USA. Rollins, M., & Halinen, A. (2005). Customer knowledge management competence: towards a theoretical framework. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Hawaii, USA.
go back to reference Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, 33(2), 163–180.CrossRef Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, 33(2), 163–180.CrossRef
go back to reference Russom, P. (2008). Data requirements for advanced analytics. TDWI Checklist Report. Russom, P. (2008). Data requirements for advanced analytics. TDWI Checklist Report.
go back to reference Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: the real-world use of big data. IBM Global Business Services, 12, 1–20. Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: the real-world use of big data. IBM Global Business Services, 12, 1–20.
go back to reference Sivarajah, U., Kamal, M.M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286. Sivarajah, U., Kamal, M.M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286.
go back to reference Tambe, P. (2014). Big data investment, skills, and firm value. Management Science, 60(6), 1452–1469.CrossRef Tambe, P. (2014). Big data investment, skills, and firm value. Management Science, 60(6), 1452–1469.CrossRef
go back to reference Van den Driest, F., Sthanunathan, S., & Weed, K. (2016). Building an insights engine. Harvard Business Review, 94(9), 64–74. Van den Driest, F., Sthanunathan, S., & Weed, K. (2016). Building an insights engine. Harvard Business Review, 94(9), 64–74.
go back to reference Van Alstyne, M., Brynjolfsson, E., & Madnick, S. (1995). Why not one big database? Principles for data ownership. Decision Support Systems, 15(4), 267–284. Van Alstyne, M., Brynjolfsson, E., & Madnick, S. (1995). Why not one big database? Principles for data ownership. Decision Support Systems, 15(4), 267–284.
go back to reference Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33. Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33.
go back to reference Watson, H. J. (2014). Tutorial: big data analytics: concepts, technologies, and applications. Communications of the Association for Information Systems, 34, 1247–1268. Watson, H. J. (2014). Tutorial: big data analytics: concepts, technologies, and applications. Communications of the Association for Information Systems, 34, 1247–1268.
go back to reference Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121. Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121.
go back to reference Wölfl, S., Leischnig, A., Ivens, B., & Hein, D. (2017). Analytics, innovativeness, and innovation performance. Proceedings of the 38rd International Conference on Information Systems, Seoul, South Korea. Wölfl, S., Leischnig, A., Ivens, B., & Hein, D. (2017). Analytics, innovativeness, and innovation performance. Proceedings of the 38rd International Conference on Information Systems, Seoul, South Korea.
go back to reference Yi, X., Liu, F., Liu, J., & Jin, H. (2014). Building a network highway for big data: architecture and challenges. IEEE Network, 28(4), 5–13. Yi, X., Liu, F., Liu, J., & Jin, H. (2014). Building a network highway for big data: architecture and challenges. IEEE Network, 28(4), 5–13.
Metadata
Title
From Big Data to Smart Data – Problemfelder der systematischen Nutzung von Daten in Unternehmen
Authors
Steffen Wölfl
Alexander Leischnig
Björn Ivens
Daniel Hein
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-658-22129-4_11

Premium Partner