Skip to main content
Top

2021 | OriginalPaper | Chapter

10. From Nano- to Macrostructured Carbon Catalysts for Water and Wastewater Treatment

Authors : João Restivo, Olívia Salomé G. P. Soares, Manuel Fernando R. Pereira

Published in: Nanostructured Catalysts for Environmental Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Environmental catalysis is a promising technology to be integrated into the present water management systems to address several emerging challenges, such as rising pressures on water availability and the impact of micropollutants.
Increasing understanding (and capabilities for development) of nanotechnologies has created opportunities to enhance the performance of various catalytic systems. In particular, the characteristics of carbon nanomaterials have been shown to potentially improve the performance of traditional carbon materials as catalysts or catalyst supports in water treatment.
This chapter details how manipulation of carbon nanomaterials from the nano- to the macroscale is used to create catalysts tailored to the requirements of the target applications. The relationships between the design at the nanoscale, including surface chemistry and textural modifications, and the deployment of the catalysts at the macroscale are illustrated through a number of relevant examples. Several cases from recent literature are used to delineate the current state-of-the-art.
A brief outlook for the future of carbon nanomaterials as catalyst and catalyst support in water treatment is offered. The challenges in integrating these solutions in real applications are discussed, and a pathway to the future is suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference K. Noguera-Oviedo, D.S. Aga, Lessons learned from more than two decades of research on emerging contaminants in the environment. J. Hazard. Mater. 316, 242–251 (2016)CrossRef K. Noguera-Oviedo, D.S. Aga, Lessons learned from more than two decades of research on emerging contaminants in the environment. J. Hazard. Mater. 316, 242–251 (2016)CrossRef
10.
go back to reference A. Kapoor, T. Viraraghavan, Nitrate removal from drinking water. J. Environ. Eng. 123, 371–380 (1997)CrossRef A. Kapoor, T. Viraraghavan, Nitrate removal from drinking water. J. Environ. Eng. 123, 371–380 (1997)CrossRef
11.
go back to reference S. Mudgal, L. Van Long, N. Saïdi, L. Wisniewska, Optimising Water Reuse in the EU: Public Consultation Analysis Report (Publications Office of the European Union, Luxembourg, 2015) S. Mudgal, L. Van Long, N. Saïdi, L. Wisniewska, Optimising Water Reuse in the EU: Public Consultation Analysis Report (Publications Office of the European Union, Luxembourg, 2015)
16.
go back to reference A. Bergquist, M. Bertoch, G. Gildert, T.J. Strathmann, C.J. Werth, Catalytic denitrification in a trickle bed reactor: ion exchange waste brine treatment. J. Am. Water Works Assoc. 109 (2017) A. Bergquist, M. Bertoch, G. Gildert, T.J. Strathmann, C.J. Werth, Catalytic denitrification in a trickle bed reactor: ion exchange waste brine treatment. J. Am. Water Works Assoc. 109 (2017)
19.
go back to reference F.L. Burton, G. Tchobanoglous, Wastewater Engineering: Treatment, Disposal and Reuse (Tata McGraw-Hill, New Delhi, 2000) F.L. Burton, G. Tchobanoglous, Wastewater Engineering: Treatment, Disposal and Reuse (Tata McGraw-Hill, New Delhi, 2000)
20.
go back to reference D.K. Kanaujiya, T. Paul, A. Sinharoy, K. Pakshirajan, Biological treatment processes for the removal of organic micropollutants from wastewater: a review. Curr. Pollut. Rep. 5, 112–128 (2019)CrossRef D.K. Kanaujiya, T. Paul, A. Sinharoy, K. Pakshirajan, Biological treatment processes for the removal of organic micropollutants from wastewater: a review. Curr. Pollut. Rep. 5, 112–128 (2019)CrossRef
22.
go back to reference S. Derrouiche, D. Bourdin, P. Roche, B. Houssais, C. MacHinal, M. Coste, J. Restivo, J.J.M. Órfão, M.F.R. Pereira, Y. Marco, E. Garcia-Bordeje, Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Sci. Technol. 68, 1377–1383 (2013)CrossRef S. Derrouiche, D. Bourdin, P. Roche, B. Houssais, C. MacHinal, M. Coste, J. Restivo, J.J.M. Órfão, M.F.R. Pereira, Y. Marco, E. Garcia-Bordeje, Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Sci. Technol. 68, 1377–1383 (2013)CrossRef
25.
go back to reference P. Serp, J.L. Figueiredo, Carbon Materials for Catalysis (John Wiley & Sons, Hoboken, NJ, 2008)CrossRef P. Serp, J.L. Figueiredo, Carbon Materials for Catalysis (John Wiley & Sons, Hoboken, NJ, 2008)CrossRef
26.
go back to reference P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis (The Royal Society of Chemistry, London, 2015) P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis (The Royal Society of Chemistry, London, 2015)
28.
go back to reference C. Popov, Nanostructured Carbon Materials (Springer, Dordrecht, 2006), pp. 387–398 C. Popov, Nanostructured Carbon Materials (Springer, Dordrecht, 2006), pp. 387–398
32.
go back to reference H.-P. Boehm, Catalytic properties of nitrogen-containing carbons, in Carbon Materials for Catalysis, (John Wiley & Sons, Hoboken, NJ, 2008), pp. 219–265CrossRef H.-P. Boehm, Catalytic properties of nitrogen-containing carbons, in Carbon Materials for Catalysis, (John Wiley & Sons, Hoboken, NJ, 2008), pp. 219–265CrossRef
34.
go back to reference J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal. Today 150(1-2), 2–7 (2009)CrossRef J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal. Today 150(1-2), 2–7 (2009)CrossRef
35.
go back to reference J.K. Chinthaginjala, K. Seshan, L. Lefferts, Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind. Eng. Chem. Res. 46, 3968 (2007)CrossRef J.K. Chinthaginjala, K. Seshan, L. Lefferts, Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind. Eng. Chem. Res. 46, 3968 (2007)CrossRef
37.
go back to reference T. Boger, S. Roy, A.K. Heibel, O. Borchers, A monolith loop reactor as an attractive alternative to slurry reactors. Catal. Today 79–80, 441–451 (2003)CrossRef T. Boger, S. Roy, A.K. Heibel, O. Borchers, A monolith loop reactor as an attractive alternative to slurry reactors. Catal. Today 79–80, 441–451 (2003)CrossRef
39.
go back to reference V. Meille, Review on methods to deposit catalysts on structured surfaces. Appl. Catal. A Gen. 315, 1–17 (2006)CrossRef V. Meille, Review on methods to deposit catalysts on structured surfaces. Appl. Catal. A Gen. 315, 1–17 (2006)CrossRef
43.
go back to reference A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, 1–23 (2012)CrossRef A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, 1–23 (2012)CrossRef
45.
go back to reference S. Armenise, M. Nebra, E. García-Bordejé, A. Monzón, Functionalization of carbon nanofibers coated on cordierite monoliths by oxidative treatment, in Studies in Surface Science and Catalysis, ed. by E. Gaigneaux, M. Devillers, S. Hermans, P. A. Jacobs, J. Martens, P. Ruiz, (Elsevier, Amstrdam, 2010), pp. 483–486 S. Armenise, M. Nebra, E. García-Bordejé, A. Monzón, Functionalization of carbon nanofibers coated on cordierite monoliths by oxidative treatment, in Studies in Surface Science and Catalysis, ed. by E. Gaigneaux, M. Devillers, S. Hermans, P. A. Jacobs, J. Martens, P. Ruiz, (Elsevier, Amstrdam, 2010), pp. 483–486
48.
go back to reference C. Pham-Huu, Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Top. Catal. 40, 49 (2006)CrossRef C. Pham-Huu, Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Top. Catal. 40, 49 (2006)CrossRef
50.
go back to reference Y. Liu, H. Ba, D.-L. Nguyen, O. Ersen, T. Romero, S. Zafeiratos, D. Begin, I. Janowska, C. Pham-Huu, Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. J. Mater. Chem. A 1, 9508 (2013). https://doi.org/10.1039/c3ta10695kCrossRef Y. Liu, H. Ba, D.-L. Nguyen, O. Ersen, T. Romero, S. Zafeiratos, D. Begin, I. Janowska, C. Pham-Huu, Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. J. Mater. Chem. A 1, 9508 (2013). https://​doi.​org/​10.​1039/​c3ta10695kCrossRef
54.
go back to reference J. Restivo, C.A. Orge, A.S.G.G. Santos, O.S.G.P. Soares, M.F.R. Pereira, Nanostructured layers of mechanically processed multi-walled carbon nanotubes for catalytic applications. ASC Appl. Nano Mater. 3(6), 5271–5284 (2020)CrossRef J. Restivo, C.A. Orge, A.S.G.G. Santos, O.S.G.P. Soares, M.F.R. Pereira, Nanostructured layers of mechanically processed multi-walled carbon nanotubes for catalytic applications. ASC Appl. Nano Mater. 3(6), 5271–5284 (2020)CrossRef
61.
go back to reference F.J. Beltrán, Ozone Reaction Kinetics for Water and Wastewater Systems (Lewis Publishers, Boca Raton, FL, 2004) F.J. Beltrán, Ozone Reaction Kinetics for Water and Wastewater Systems (Lewis Publishers, Boca Raton, FL, 2004)
63.
go back to reference A.G. Gonçalves, J.L. Figueiredo, J.J.M. Órfão, M.F.R. Pereira, Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon N.Y. 48, 4369–4381 (2010)CrossRef A.G. Gonçalves, J.L. Figueiredo, J.J.M. Órfão, M.F.R. Pereira, Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon N.Y. 48, 4369–4381 (2010)CrossRef
69.
go back to reference R. Oulton, J.P. Haase, S. Kaalberg, C.T. Redmond, M.J. Nalbandian, D.M. Cwiertny, Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environ. Sci. Technol. 49, 3687–3697 (2015). https://doi.org/10.1021/es505430vCrossRef R. Oulton, J.P. Haase, S. Kaalberg, C.T. Redmond, M.J. Nalbandian, D.M. Cwiertny, Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environ. Sci. Technol. 49, 3687–3697 (2015). https://​doi.​org/​10.​1021/​es505430vCrossRef
70.
go back to reference F. Morales-Lara, M.J. Pérez-Mendoza, D. Altmajer-Vaz, M. García-Román, M. Melguizo, F.J. López-Garzón, M. Domingo-García, Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J. Phys. Chem. C 117, 11647–11655 (2013). https://doi.org/10.1021/jp4017097CrossRef F. Morales-Lara, M.J. Pérez-Mendoza, D. Altmajer-Vaz, M. García-Román, M. Melguizo, F.J. López-Garzón, M. Domingo-García, Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J. Phys. Chem. C 117, 11647–11655 (2013). https://​doi.​org/​10.​1021/​jp4017097CrossRef
71.
73.
go back to reference J. Restivo, R.P. Rocha, A.M.T. Silva, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Cuihua Xuebao/Chinese J. Catal. 35, 896–905 (2014) J. Restivo, R.P. Rocha, A.M.T. Silva, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Cuihua Xuebao/Chinese J. Catal. 35, 896–905 (2014)
74.
81.
go back to reference J. Restivo, J.J.M. Órfão, S. Armenise, E. Garcia-Bordejé, M.F.R. Pereira, Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J. Hazard. Mater. 239–240, 249–256 (2012)CrossRef J. Restivo, J.J.M. Órfão, S. Armenise, E. Garcia-Bordejé, M.F.R. Pereira, Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J. Hazard. Mater. 239–240, 249–256 (2012)CrossRef
82.
go back to reference J. Restivo, J.J.M. Órfão, M.F.R. Pereira, E. Garcia-Bordejé, P. Roche, D. Bourdin, B. Houssais, M. Coste, S. Derrouiche, Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chem. Eng. J. 230, 115–123 (2013)CrossRef J. Restivo, J.J.M. Órfão, M.F.R. Pereira, E. Garcia-Bordejé, P. Roche, D. Bourdin, B. Houssais, M. Coste, S. Derrouiche, Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chem. Eng. J. 230, 115–123 (2013)CrossRef
85.
go back to reference X. Fan, J. Restivo, J.J.M. Órfão, M.F.R. Pereira, A.A. Lapkin, The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chem. Eng. J. 241, 66–76 (2014)CrossRef X. Fan, J. Restivo, J.J.M. Órfão, M.F.R. Pereira, A.A. Lapkin, The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chem. Eng. J. 241, 66–76 (2014)CrossRef
87.
go back to reference Z. Cai, A.D. Dwivedi, W.-N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C.-H. Huang, J. Fu, Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. Nano 5, 27–47 (2018). https://doi.org/10.1039/C7EN00644FCrossRef Z. Cai, A.D. Dwivedi, W.-N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C.-H. Huang, J. Fu, Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. Nano 5, 27–47 (2018). https://​doi.​org/​10.​1039/​C7EN00644FCrossRef
97.
go back to reference Z.Q. Liu, J. Ma, Y.-H. Cui, B.-P. Zhang, Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube. Appl Catal B 92, 301–306 (2009)CrossRef Z.Q. Liu, J. Ma, Y.-H. Cui, B.-P. Zhang, Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube. Appl Catal B 92, 301–306 (2009)CrossRef
102.
go back to reference J. Restivo, J.J.M. Órfão, M.F.R. Pereira, E. Vanhaecke, M. Rönning, T. Iouranova, L. Kiwi-Minsker, S. Armenise, E. Garcia-Bordejé, Catalytic ozonation of oxalic acid using carbon nanofibres on macrostructured supports. Water Sci. Technol. 65, 1854–1862 (2012). https://doi.org/10.2166/wst.2012.882CrossRef J. Restivo, J.J.M. Órfão, M.F.R. Pereira, E. Vanhaecke, M. Rönning, T. Iouranova, L. Kiwi-Minsker, S. Armenise, E. Garcia-Bordejé, Catalytic ozonation of oxalic acid using carbon nanofibres on macrostructured supports. Water Sci. Technol. 65, 1854–1862 (2012). https://​doi.​org/​10.​2166/​wst.​2012.​882CrossRef
103.
go back to reference K.M. Sushma, A.K. Saroha, Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review. J. Environ. Manag. 228, 169–188 (2018)CrossRef K.M. Sushma, A.K. Saroha, Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review. J. Environ. Manag. 228, 169–188 (2018)CrossRef
104.
go back to reference FREECATS Final Report Summary—FREECATS (Doped carbon nanostructures as metal-free catalysts)|Report Summary|FREECATS|FP7|CORDIS|European Commission FREECATS Final Report Summary—FREECATS (Doped carbon nanostructures as metal-free catalysts)|Report Summary|FREECATS|FP7|CORDIS|European Commission
106.
go back to reference A. Pintar, Catalytic processes for the purification of drinking water and industrial effluents. Catal. Today 77(4), 451–465 (2003)CrossRef A. Pintar, Catalytic processes for the purification of drinking water and industrial effluents. Catal. Today 77(4), 451–465 (2003)CrossRef
107.
go back to reference D.B. Thakur, R.M. Tiggelaar, Y. Weber, J.G.E. Gardeniers, L. Lefferts, K. Seshan, Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part II: catalytic reduction of bromate contaminants in aqueous phase. Appl. Catal. B Environ. 102, 243–250 (2011). https://doi.org/10.1016/j.apcatb.2010.12.004CrossRef D.B. Thakur, R.M. Tiggelaar, Y. Weber, J.G.E. Gardeniers, L. Lefferts, K. Seshan, Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part II: catalytic reduction of bromate contaminants in aqueous phase. Appl. Catal. B Environ. 102, 243–250 (2011). https://​doi.​org/​10.​1016/​j.​apcatb.​2010.​12.​004CrossRef
109.
go back to reference A. Pintar, Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35 (1999)CrossRef A. Pintar, Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35 (1999)CrossRef
113.
go back to reference M.L. Toebes, Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: kinetic modeling. Chem. Eng. Sci. 60, 5682 (2005)CrossRef M.L. Toebes, Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: kinetic modeling. Chem. Eng. Sci. 60, 5682 (2005)CrossRef
120.
go back to reference O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Appl. Catal. B Environ. 102, 424–432 (2011)CrossRef O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Appl. Catal. B Environ. 102, 424–432 (2011)CrossRef
121.
go back to reference O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Pd-Cu and Pt-Cu catalysts supported on carbon nanotubes for nitrate reduction in water. Ind. Eng. Chem. Res. 49, 7183–7192 (2010)CrossRef O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Pd-Cu and Pt-Cu catalysts supported on carbon nanotubes for nitrate reduction in water. Ind. Eng. Chem. Res. 49, 7183–7192 (2010)CrossRef
122.
go back to reference O.S.G.P. Soares, X. Fan, J.J.M. Órfão, A.A. Lapkin, M.F.R. Pereira, Kinetic modeling of nitrate reduction catalyzed by Pd-Cu supported on carbon nanotubes. Ind. Eng. Chem. Res. 51, 4854–4860 (2012)CrossRef O.S.G.P. Soares, X. Fan, J.J.M. Órfão, A.A. Lapkin, M.F.R. Pereira, Kinetic modeling of nitrate reduction catalyzed by Pd-Cu supported on carbon nanotubes. Ind. Eng. Chem. Res. 51, 4854–4860 (2012)CrossRef
125.
go back to reference A. Sepulveda-Escribano, F. Coloma, F. Rodrıguez-Reinoso, Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl. Catal. A Gen. 173, 247–257 (1998)CrossRef A. Sepulveda-Escribano, F. Coloma, F. Rodrıguez-Reinoso, Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl. Catal. A Gen. 173, 247–257 (1998)CrossRef
129.
go back to reference E. Garcia-Bordeje, Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: influence of the oxidation pre-treatment. Carbon N.Y. 44, 407 (2006)CrossRef E. Garcia-Bordeje, Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: influence of the oxidation pre-treatment. Carbon N.Y. 44, 407 (2006)CrossRef
131.
go back to reference P. Yaseneva, C.F. Marti, E. Palomares, X. Fan, T. Morgan, P.S. Perez, M. Ronning, F. Huang, T. Yuranova, L. Kiwi-Minsker, Efficient reduction of bromates using carbon nanofibre supported catalysts: experimental and a comparative life cycle assessment study. Chem. Eng. J. 248, 230–241 (2014)CrossRef P. Yaseneva, C.F. Marti, E. Palomares, X. Fan, T. Morgan, P.S. Perez, M. Ronning, F. Huang, T. Yuranova, L. Kiwi-Minsker, Efficient reduction of bromates using carbon nanofibre supported catalysts: experimental and a comparative life cycle assessment study. Chem. Eng. J. 248, 230–241 (2014)CrossRef
133.
go back to reference T. Yuranova, L. Kiwi-Minsker, C. Franch, A.E. Palomares, S. Armenise, E. García-Bordejé, Springer, in Industrial and Engineering Chemistry Research, (American Chemical Society, Washington, DC, 2013), pp. 13930–13937 T. Yuranova, L. Kiwi-Minsker, C. Franch, A.E. Palomares, S. Armenise, E. García-Bordejé, Springer, in Industrial and Engineering Chemistry Research, (American Chemical Society, Washington, DC, 2013), pp. 13930–13937
135.
go back to reference O.S.G.P. Soares, J.J.M. Órfão, E. Gallegos-Suarez, E. Castillejos, I. Rodríguez-Ramos, M.F.R. Pereira, Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environ. Technol. 33, 2353–2358 (2012)CrossRef O.S.G.P. Soares, J.J.M. Órfão, E. Gallegos-Suarez, E. Castillejos, I. Rodríguez-Ramos, M.F.R. Pereira, Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environ. Technol. 33, 2353–2358 (2012)CrossRef
Metadata
Title
From Nano- to Macrostructured Carbon Catalysts for Water and Wastewater Treatment
Authors
João Restivo
Olívia Salomé G. P. Soares
Manuel Fernando R. Pereira
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-58934-9_10

Premium Partners