Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

25-11-2017 | Issue 3/2018

Journal of Scientific Computing 3/2018

Frozen Gaussian Approximation-Based Artificial Boundary Conditions for One-Dimensional Nonlinear Schrödinger Equation in the Semiclassical Regime

Journal:
Journal of Scientific Computing > Issue 3/2018
Authors:
Ricardo Delgadillo, Xu Yang, Jiwei Zhang
Important notes
Ricardo Delgadillo and Xu Yang were partially supported by the NSF Grants DMS-1418936 and DMS-1107291: NSF Research Network in Mathematical Sciences “Kinetic description of emerging challenges in multiscale problems of natural science”. Jiwei Zhang was partially supported by the National Natural Science Foundation of China under Grants 11771035, 91430216 and U1530401. We acknowledge support from the Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316. Xu Yang was also partially supported by Hellman Family Foundation Faculty Fellowship, UC Santa Barbara. Part of work was done during Xu Yang’s visit to Beijing Computational Science Research Center, and he appreciates their hospitality.

Abstract

In this paper, we first analyze the stability of the unified approach, proposed in Zhang et al. (Phys Rev E 78:026709, 2008), for the nonlinear Schödinger equation in the semiclassical regime. The analysis shows that small semiclassical parameters deteriorate the accuracy of the unified approach, which will be also verified by numerical examples. Motivated by the time-splitting spectral method (Bao et al. in SIAM J Sci Comput 25:27–64, 2003), we generalize our previous work (Yang and Zhang in SIAM J Numer Anal 52:808–831, 2014), and propose frozen Gaussian approximation (FGA)-based artificial boundary conditions for solving one-dimensional nonlinear Schrödinger equation on unbounded domain. We split the linear part of the Schrödinger equation from the nonlinear part, and deal with the artificial boundary condition of the linear part by a simple strategy that all the Gaussian functions, whose dynamics are governed by the Hamiltonian flows, going out of the domain will be eliminated numerically. Since the nonlinear part is given by ordinary differential equations, it does not require artificial boundary conditions and can be solved directly. This strategy also works for the nonlinear Schrödinger equation with periodic lattice potential by using Bloch decomposition-based FGA. We present numerical examples to verify the performance of proposed numerical methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner

    Image Credits