Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

25-11-2017

Frozen Gaussian Approximation-Based Artificial Boundary Conditions for One-Dimensional Nonlinear Schrödinger Equation in the Semiclassical Regime

Authors: Ricardo Delgadillo, Xu Yang, Jiwei Zhang

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we first analyze the stability of the unified approach, proposed in Zhang et al. (Phys Rev E 78:026709, 2008), for the nonlinear Schödinger equation in the semiclassical regime. The analysis shows that small semiclassical parameters deteriorate the accuracy of the unified approach, which will be also verified by numerical examples. Motivated by the time-splitting spectral method (Bao et al. in SIAM J Sci Comput 25:27–64, 2003), we generalize our previous work (Yang and Zhang in SIAM J Numer Anal 52:808–831, 2014), and propose frozen Gaussian approximation (FGA)-based artificial boundary conditions for solving one-dimensional nonlinear Schrödinger equation on unbounded domain. We split the linear part of the Schrödinger equation from the nonlinear part, and deal with the artificial boundary condition of the linear part by a simple strategy that all the Gaussian functions, whose dynamics are governed by the Hamiltonian flows, going out of the domain will be eliminated numerically. Since the nonlinear part is given by ordinary differential equations, it does not require artificial boundary conditions and can be solved directly. This strategy also works for the nonlinear Schrödinger equation with periodic lattice potential by using Bloch decomposition-based FGA. We present numerical examples to verify the performance of proposed numerical methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Han, H.: The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations in Unbounded Domains, Frontiers and Prospents of Contemporary Applied Mathematics. Higher Education Press, World Scientific, Singapore (2005) Han, H.: The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations in Unbounded Domains, Frontiers and Prospents of Contemporary Applied Mathematics. Higher Education Press, World Scientific, Singapore (2005)
4.
go back to reference Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schröinger equations. J. Comput. Phys. 215, 552–565 (2006)MathSciNetCrossRefMATH Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schröinger equations. J. Comput. Phys. 215, 552–565 (2006)MathSciNetCrossRefMATH
5.
go back to reference Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 74, 037704 (2006)CrossRef Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 74, 037704 (2006)CrossRef
6.
go back to reference Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schrödinger-type equations: application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225, 1577–1589 (2007)MathSciNetCrossRefMATH Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schrödinger-type equations: application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225, 1577–1589 (2007)MathSciNetCrossRefMATH
7.
go back to reference Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 78, 026709 (2008)CrossRef Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 78, 026709 (2008)CrossRef
8.
go back to reference Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations: two-dimensional case. Phys. Rev. E 79, 046711 (2009)MathSciNetCrossRef Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations: two-dimensional case. Phys. Rev. E 79, 046711 (2009)MathSciNetCrossRef
9.
go back to reference Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schröinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetCrossRefMATH Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schröinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetCrossRefMATH
10.
go back to reference Pang, G., Bian, L., Tang, S.: Almost exact boundary condition for one-dimensional Schrödinger equations. Phys. Rev. E 86, 066709 (2012)CrossRef Pang, G., Bian, L., Tang, S.: Almost exact boundary condition for one-dimensional Schrödinger equations. Phys. Rev. E 86, 066709 (2012)CrossRef
11.
go back to reference Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)MathSciNetMATH Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)MathSciNetMATH
12.
go back to reference Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH
13.
go back to reference Markowich, P., Pietra, P., Pohl, C.: Numerical approximation of quadratic observable of Schrödinger equation-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)MathSciNetCrossRefMATH Markowich, P., Pietra, P., Pohl, C.: Numerical approximation of quadratic observable of Schrödinger equation-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)MathSciNetCrossRefMATH
14.
go back to reference Markowich, P., Pietra, P., Pohl, C., Stimming, H.: A wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)MathSciNetCrossRefMATH Markowich, P., Pietra, P., Pohl, C., Stimming, H.: A wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)MathSciNetCrossRefMATH
16.
go back to reference Hagedorn, G.: Semiclassical quantum mechanics I: \(\hbar \rightarrow 0\) limit for coherent states. Commun. Math. Phys. 71, 77–93 (1980)MathSciNetCrossRef Hagedorn, G.: Semiclassical quantum mechanics I: \(\hbar \rightarrow 0\) limit for coherent states. Commun. Math. Phys. 71, 77–93 (1980)MathSciNetCrossRef
17.
go back to reference Jin, S., Markowich, P.A., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 211–289 (2011)MathSciNetCrossRefMATH Jin, S., Markowich, P.A., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 211–289 (2011)MathSciNetCrossRefMATH
18.
go back to reference Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)MathSciNetCrossRefMATH Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)MathSciNetCrossRefMATH
19.
go back to reference Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)MathSciNetCrossRefMATH
20.
go back to reference Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. J. Comput. Phys. 229, 4869–4883 (2010)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. J. Comput. Phys. 229, 4869–4883 (2010)MathSciNetCrossRefMATH
21.
go back to reference Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger–Poisson equations. J. Comput. Math. 28, 261–272 (2010)MathSciNetMATH Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger–Poisson equations. J. Comput. Math. 28, 261–272 (2010)MathSciNetMATH
22.
go back to reference Jin, S., Wu, H., Yang, X.: Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime. Commun. Comput. Phys. 9, 668–687 (2011)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X.: Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime. Commun. Comput. Phys. 9, 668–687 (2011)MathSciNetCrossRefMATH
23.
go back to reference Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high-frequency wave propagation. Geophysics 72, 61–76 (2007)CrossRef Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high-frequency wave propagation. Geophysics 72, 61–76 (2007)CrossRef
24.
go back to reference Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semiclassical regime. J. Comput. Phys. 228, 2951–2977 (2009)MathSciNetCrossRefMATH Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semiclassical regime. J. Comput. Phys. 228, 2951–2977 (2009)MathSciNetCrossRefMATH
25.
go back to reference Liu, H., Ralston, J.: Recovery of high frequency wave fields for the acoustic wave equation. Multiscale Model. Simul. 8, 428–444 (2009)MathSciNetCrossRefMATH Liu, H., Ralston, J.: Recovery of high frequency wave fields for the acoustic wave equation. Multiscale Model. Simul. 8, 428–444 (2009)MathSciNetCrossRefMATH
26.
go back to reference Liu, H., Ralston, J.: Recovery of high frequency wave fields from phase space based measurements. Multiscale Model. Simul. 8, 622–644 (2010)MathSciNetCrossRefMATH Liu, H., Ralston, J.: Recovery of high frequency wave fields from phase space based measurements. Multiscale Model. Simul. 8, 622–644 (2010)MathSciNetCrossRefMATH
27.
go back to reference Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47, 421–439 (2010)MathSciNetCrossRefMATH Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47, 421–439 (2010)MathSciNetCrossRefMATH
28.
go back to reference Qian, J., Ying, L.: Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 7848–7873 (2010)MathSciNetCrossRefMATH Qian, J., Ying, L.: Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 7848–7873 (2010)MathSciNetCrossRefMATH
29.
go back to reference Qian, J., Ying, L.: Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul. 8, 1803–1837 (2010)MathSciNetCrossRefMATH Qian, J., Ying, L.: Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul. 8, 1803–1837 (2010)MathSciNetCrossRefMATH
30.
go back to reference Ralston, J.: Gaussian beams and the propagation of singularities, Studies in PDEs. MAA Stud. Math. 23, 206–248 (1982) Ralston, J.: Gaussian beams and the propagation of singularities, Studies in PDEs. MAA Stud. Math. 23, 206–248 (1982)
33.
34.
go back to reference Lu, J., Yang, X.: Convergence of frozen Gaussian approximation for high frequency wave propagation. Commun. Pure Appl. Math. 65, 759–789 (2012)MathSciNetCrossRefMATH Lu, J., Yang, X.: Convergence of frozen Gaussian approximation for high frequency wave propagation. Commun. Pure Appl. Math. 65, 759–789 (2012)MathSciNetCrossRefMATH
35.
go back to reference Lu, J., Yang, X.: Frozen Gaussian approximation for general linear strictly hyperbolic system: formulation and Eulerian methods. Multiscale Model. Simul. 10, 451–472 (2012)MathSciNetCrossRefMATH Lu, J., Yang, X.: Frozen Gaussian approximation for general linear strictly hyperbolic system: formulation and Eulerian methods. Multiscale Model. Simul. 10, 451–472 (2012)MathSciNetCrossRefMATH
36.
go back to reference Herman, M., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, 27–34 (1984)CrossRef Herman, M., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, 27–34 (1984)CrossRef
37.
go back to reference Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH
38.
go back to reference Yang, X., Zhang, J.: Computation of the Schrödinger equation in the semiclassical regime on unbounded domain. SIAM J. Numer. Anal. 52, 808–831 (2014)MathSciNetCrossRefMATH Yang, X., Zhang, J.: Computation of the Schrödinger equation in the semiclassical regime on unbounded domain. SIAM J. Numer. Anal. 52, 808–831 (2014)MathSciNetCrossRefMATH
39.
go back to reference Kuska, J.-P.: Absorbing boundary conditions for the Schrödinger equation on finite intervals. Phys. Rev. B 46, 5000 (1992)CrossRef Kuska, J.-P.: Absorbing boundary conditions for the Schrödinger equation on finite intervals. Phys. Rev. B 46, 5000 (1992)CrossRef
40.
go back to reference Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 314–358 (1979)MathSciNetCrossRefMATH Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 314–358 (1979)MathSciNetCrossRefMATH
41.
go back to reference Zhang, J., Xu, Z., Wu, X., Wang, D.: Stability analysis of local absorbing boundary conditions for general nonlinear Schrödinger equations in one and two dimensions. J. Comput. Math. 35, 1–18 (2017)MathSciNetCrossRef Zhang, J., Xu, Z., Wu, X., Wang, D.: Stability analysis of local absorbing boundary conditions for general nonlinear Schrödinger equations in one and two dimensions. J. Comput. Math. 35, 1–18 (2017)MathSciNetCrossRef
42.
43.
go back to reference Delgodillo, R., Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation in periodic media. arXiv:1504.08051 Delgodillo, R., Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation in periodic media. arXiv:​1504.​08051
44.
go back to reference Delgodillo, R., Lu, J., Yang, X.: Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation with periodic potentials. SIAM J. Sci. Comput. 38, A2440–A2463 (2016)CrossRefMATH Delgodillo, R., Lu, J., Yang, X.: Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation with periodic potentials. SIAM J. Sci. Comput. 38, A2440–A2463 (2016)CrossRefMATH
45.
go back to reference Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials. SIAM J. Sci. Comput. 29, 515–538 (2007)MathSciNetCrossRefMATH Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials. SIAM J. Sci. Comput. 29, 515–538 (2007)MathSciNetCrossRefMATH
46.
go back to reference Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: Numerical simulation of the nonlinear Schrödinger equation with multi-dimensional periodic potentials. Multiscale Model. Simul. 7, 539–564 (2008)MathSciNetCrossRefMATH Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: Numerical simulation of the nonlinear Schrödinger equation with multi-dimensional periodic potentials. Multiscale Model. Simul. 7, 539–564 (2008)MathSciNetCrossRefMATH
47.
go back to reference Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)MathSciNetCrossRefMATH Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)MathSciNetCrossRefMATH
48.
go back to reference Bao, W., Cai, Y.: Optimal error estimate of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)MathSciNetCrossRefMATH Bao, W., Cai, Y.: Optimal error estimate of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)MathSciNetCrossRefMATH
49.
go back to reference Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH
Metadata
Title
Frozen Gaussian Approximation-Based Artificial Boundary Conditions for One-Dimensional Nonlinear Schrödinger Equation in the Semiclassical Regime
Authors
Ricardo Delgadillo
Xu Yang
Jiwei Zhang
Publication date
25-11-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0606-5

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner