Skip to main content
Top
Published in: Wood Science and Technology 1/2018

04-11-2017 | Original

FTIR-based models for assessment of mass yield and biofuel properties of torrefied wood

Authors: Chi-Leung So, Thomas L. Eberhardt

Published in: Wood Science and Technology | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biofuel properties can be improved through torrefaction, whereby the biomass is treated with moderately elevated temperatures (200–300 °C) under conditions that are essentially anaerobic and at atmospheric pressure. Varying the torrefaction conditions of temperature and treatment duration, as well as any feedstock pretreatments (drying, grinding), can generate products having varying degrees of thermal degradation, thus impacting performance in subsequent biofuel applications (e.g., gasification, pyrolysis, combustion). Pulp-grade pine wood chips were processed through a laboratory-scale crucible furnace retort with the remaining solid carbonized products subjected to ultimate, proximate, and spectroscopic analyses. Compared to air-dry wood chips, lower mass yields (i.e., greater thermal degradation) resulted from oven drying or grinding pretreatments. Regarding the torrefaction conditions, the degree of thermal degradation varied to a greater extent as a function of applied temperature than treatment duration. Furthermore, mass yield explained 95% of the variation in higher heating value. Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis gave plots in which sample points clustered by torrefaction temperature and time, as well as by sample type (i.e., with or without pretreatment). Partial least squares regression was able to accurately predict mass yield and to a lesser extent carbon content. Results suggest that FTIR monitoring of finely ground samples in a production environment could be used off-line as a rapid assessment technique for mass yield and therefore facilitate adjustments to process parameters of temperature and/or treatment duration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akgül M, Gümüskaya E, Korkut S (2007) Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir (Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)) wood. Wood Sci Technol 41:281–289CrossRef Akgül M, Gümüskaya E, Korkut S (2007) Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir (Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)) wood. Wood Sci Technol 41:281–289CrossRef
go back to reference Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101:9778–9784CrossRefPubMed Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101:9778–9784CrossRefPubMed
go back to reference Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175CrossRef Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175CrossRef
go back to reference Barta-Rajnai E, Jakab E, Sebestyén Z, May Z, Barta Z, Wang L, Skreiberg O, Grønli M, Bozi J, Czégény Z (2016) Comprehensive compositional study of torrefied wood and herbaceous materials by chemical analysis and thermoanalytical methods. Energy Fuels 30:8019–8030CrossRef Barta-Rajnai E, Jakab E, Sebestyén Z, May Z, Barta Z, Wang L, Skreiberg O, Grønli M, Bozi J, Czégény Z (2016) Comprehensive compositional study of torrefied wood and herbaceous materials by chemical analysis and thermoanalytical methods. Energy Fuels 30:8019–8030CrossRef
go back to reference Ben H, Ragauskas AJ (2012) Torrefaction of loblolly pine. Green Chem 14:72–76CrossRef Ben H, Ragauskas AJ (2012) Torrefaction of loblolly pine. Green Chem 14:72–76CrossRef
go back to reference Bhuiyan MTR, Hirai N, Sobue N (2001) Effect of intermittent heat treatment on crystallinity in wood cellulose. J Wood Sci 47:336–341CrossRef Bhuiyan MTR, Hirai N, Sobue N (2001) Effect of intermittent heat treatment on crystallinity in wood cellulose. J Wood Sci 47:336–341CrossRef
go back to reference Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856CrossRef Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856CrossRef
go back to reference Chen W-H, Kuo P-C (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811CrossRef Chen W-H, Kuo P-C (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811CrossRef
go back to reference Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sustain Energy Rev 15:4212–4222CrossRef Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sustain Energy Rev 15:4212–4222CrossRef
go back to reference Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Biorefining 5:317–329CrossRef Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Biorefining 5:317–329CrossRef
go back to reference Couhert C, Salvador S, Commandré J-M (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290CrossRef Couhert C, Salvador S, Commandré J-M (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290CrossRef
go back to reference Demirbas A, Demirbas AH (2004) Estimating the calorific values of lignocellulosic fuels. Energy Explor Exploit 22(2):135–143CrossRef Demirbas A, Demirbas AH (2004) Estimating the calorific values of lignocellulosic fuels. Energy Explor Exploit 22(2):135–143CrossRef
go back to reference Deng J, Wang G-J, Kuang J-H, Zhang Y-L, Luo Y-H (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 86:331–337CrossRef Deng J, Wang G-J, Kuang J-H, Zhang Y-L, Luo Y-H (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 86:331–337CrossRef
go back to reference Eberhardt TL, Reed KG (2014) Technical note: evaluation of a crucible furnace retort for laboratory torrefactions of wood chips. Wood Fiber Sci 46(4):600–604 Eberhardt TL, Reed KG (2014) Technical note: evaluation of a crucible furnace retort for laboratory torrefactions of wood chips. Wood Fiber Sci 46(4):600–604
go back to reference Eseyin AE, Steele PH, Pittman CU Jr (2015) Current trends in the production and applications of torrefied wood/biomass—a review. BioResources 10(4):8812–8858CrossRef Eseyin AE, Steele PH, Pittman CU Jr (2015) Current trends in the production and applications of torrefied wood/biomass—a review. BioResources 10(4):8812–8858CrossRef
go back to reference Gao N, Li A, Quan C, Dub L, Duan Y (2013) TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrol 100:26–32CrossRef Gao N, Li A, Quan C, Dub L, Duan Y (2013) TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrol 100:26–32CrossRef
go back to reference Gaur S, Reed T (1995) An atlas of thermal data for biomass and other fuels. NREL/TB-433-7965, UC category: 1310, DE95009212, National Renewable Laboratory, Golden Colorado, USA Gaur S, Reed T (1995) An atlas of thermal data for biomass and other fuels. NREL/TB-433-7965, UC category: 1310, DE95009212, National Renewable Laboratory, Golden Colorado, USA
go back to reference Gonzalez-Pena MM, Hale MDC (2011) Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45:83–102CrossRef Gonzalez-Pena MM, Hale MDC (2011) Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45:83–102CrossRef
go back to reference Kymäläinen M, Rautkari L, Hill CAS (2015) Sorption behavior of torrefied wood and charcoal determined by dynamic vapour sorption. J Mater Sci 50:7673–7680CrossRef Kymäläinen M, Rautkari L, Hill CAS (2015) Sorption behavior of torrefied wood and charcoal determined by dynamic vapour sorption. J Mater Sci 50:7673–7680CrossRef
go back to reference Labbé N, Harper D, Rials T, Elder T (2006) Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. J Agric Food Chem 54:3492–3497CrossRefPubMed Labbé N, Harper D, Rials T, Elder T (2006) Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. J Agric Food Chem 54:3492–3497CrossRefPubMed
go back to reference Lestander TA, Rudolfsson M, Pommer L, Nordin A (2014) NIR provides excellent predictions of properties from torrefaction and pyrolysis of biomass. Green Chem 16:4906–4913CrossRef Lestander TA, Rudolfsson M, Pommer L, Nordin A (2014) NIR provides excellent predictions of properties from torrefaction and pyrolysis of biomass. Green Chem 16:4906–4913CrossRef
go back to reference Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 93:680–685CrossRef Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 93:680–685CrossRef
go back to reference Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91:147–154CrossRef Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91:147–154CrossRef
go back to reference Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L, Bonnefois L, Bardet M (2012) NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92(1):271–280CrossRef Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L, Bonnefois L, Bardet M (2012) NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92(1):271–280CrossRef
go back to reference Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446CrossRefPubMed Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446CrossRefPubMed
go back to reference Na BI, Kim YH, Lim WS, Lee SM, Lee HW, Lee JW (2013) Torrefaction of oil palm mesocarp fiber and their effect on pelletizing. Biomass Bioenerg 52:159–165CrossRef Na BI, Kim YH, Lim WS, Lee SM, Lee HW, Lee JW (2013) Torrefaction of oil palm mesocarp fiber and their effect on pelletizing. Biomass Bioenerg 52:159–165CrossRef
go back to reference Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibrations and classification. NIR Publications, Chichester Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibrations and classification. NIR Publications, Chichester
go back to reference Park J, Meng J, Lim KH, Rojas OJ, Park S (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrol 100:199–206CrossRef Park J, Meng J, Lim KH, Rojas OJ, Park S (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrol 100:199–206CrossRef
go back to reference Parr Instruments (2006) Parr 6100 operating manual, version date 9-6-06. Parr Instruments, Moine Parr Instruments (2006) Parr 6100 operating manual, version date 9-6-06. Parr Instruments, Moine
go back to reference Pierre F, Almeida G, Otavio Brito J, Perre P (2011) Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. BioResources 6(2):1204–1218 Pierre F, Almeida G, Otavio Brito J, Perre P (2011) Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. BioResources 6(2):1204–1218
go back to reference Prins MJ, Ptasinski KJ, Janssen FJJG (2006a) More efficient biomass gasification via torrefaction. Energy 31:3458–3470CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006a) More efficient biomass gasification via torrefaction. Energy 31:3458–3470CrossRef
go back to reference Prins MJ, Ptasinski KJ, Janssen FJJG (2006b) Torrefaction of wood Part 1. Weight loss kinetics. J Anal Appl Pyrol 77:28–34CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006b) Torrefaction of wood Part 1. Weight loss kinetics. J Anal Appl Pyrol 77:28–34CrossRef
go back to reference Prins MJ, Ptasinski KJ, Janssen FJJG (2006c) Torrefaction of wood Part 2. Analysis of products. J Anal Appl Pyrol 77:35–40CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006c) Torrefaction of wood Part 2. Analysis of products. J Anal Appl Pyrol 77:35–40CrossRef
go back to reference Pushkin SA, Kozlova LV, Makarov AA, Grachev AN, Gorshkova TA (2015) Cell wall components in torrefied softwood and hardwood samples. J Anal Appl Pyrol 116:102–113CrossRef Pushkin SA, Kozlova LV, Makarov AA, Grachev AN, Gorshkova TA (2015) Cell wall components in torrefied softwood and hardwood samples. J Anal Appl Pyrol 116:102–113CrossRef
go back to reference Rousset P, Aguiar C, Labbé N, Commandre J-M (2011a) Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 102:8225–8231CrossRefPubMed Rousset P, Aguiar C, Labbé N, Commandre J-M (2011a) Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 102:8225–8231CrossRefPubMed
go back to reference Rousset P, Davrieux F, Macedo L, Perre P (2011b) Characterisation of the torrefaction of beech wood using NIRS: combined effects of temperature and duration. Biomass Bioenerg 35:1219–1226CrossRef Rousset P, Davrieux F, Macedo L, Perre P (2011b) Characterisation of the torrefaction of beech wood using NIRS: combined effects of temperature and duration. Biomass Bioenerg 35:1219–1226CrossRef
go back to reference Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and pelletization for fuel pellet production—a parametric study. Appl Energy 140:378–384CrossRef Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and pelletization for fuel pellet production—a parametric study. Appl Energy 140:378–384CrossRef
go back to reference Rudolfsson M, Borén E, Pommer L, Nordin A, Lestander TA (2017) Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy 191:414–424CrossRef Rudolfsson M, Borén E, Pommer L, Nordin A, Lestander TA (2017) Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy 191:414–424CrossRef
go back to reference Salema AA, Afzal MT, Motasemi F (2014) Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach. J Anal Appl Pyrol 105:217–226CrossRef Salema AA, Afzal MT, Motasemi F (2014) Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach. J Anal Appl Pyrol 105:217–226CrossRef
go back to reference Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654CrossRef Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654CrossRef
go back to reference Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L, Henriksen UB (2011) Pelletizing properties of torrefied spruce. Biomass Bioenerg 35:4690–4698CrossRef Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L, Henriksen UB (2011) Pelletizing properties of torrefied spruce. Biomass Bioenerg 35:4690–4698CrossRef
go back to reference Strandberg M, Olofsson I, Pommer L, Wiklund-Lindströma S, Åberg K, Nordin A (2015) Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process Technol 134:387–398CrossRef Strandberg M, Olofsson I, Pommer L, Wiklund-Lindströma S, Åberg K, Nordin A (2015) Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process Technol 134:387–398CrossRef
go back to reference Strandberg A, Holmgren P, Broström M (2017) Predicting fuel properties of biomass using thermogravimetry and multivariate data analysis. Fuel Process Technol 156:107–112CrossRef Strandberg A, Holmgren P, Broström M (2017) Predicting fuel properties of biomass using thermogravimetry and multivariate data analysis. Fuel Process Technol 156:107–112CrossRef
go back to reference Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153CrossRef Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153CrossRef
go back to reference Tsuchikawa S, Schwanninger M (2013) A review of recent near-infrared research for wood and paper (Part 2). Appl Spectrosc Rev 48:560–587CrossRef Tsuchikawa S, Schwanninger M (2013) A review of recent near-infrared research for wood and paper (Part 2). Appl Spectrosc Rev 48:560–587CrossRef
go back to reference van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762 van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762
go back to reference Via BK, Adhikari S, Taylor S (2013) Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour Technol 133:1–8CrossRefPubMed Via BK, Adhikari S, Taylor S (2013) Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour Technol 133:1–8CrossRefPubMed
go back to reference Wannapeera J, Fungtammasan B, Worasuwannarak N (2011) Effects of temperature and holding time during torrefacton on the pyrolysis behaviors of woody biomass. J Anal Appl Pyrol 92:99–105CrossRef Wannapeera J, Fungtammasan B, Worasuwannarak N (2011) Effects of temperature and holding time during torrefacton on the pyrolysis behaviors of woody biomass. J Anal Appl Pyrol 92:99–105CrossRef
go back to reference Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137CrossRef Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137CrossRef
go back to reference Wold H (1975) Path models with latent variables: the NIPALS approach. In: Blalock HM (ed) Quantitative sociology. Academic Press, New York, pp 305–357 Wold H (1975) Path models with latent variables: the NIPALS approach. In: Blalock HM (ed) Quantitative sociology. Academic Press, New York, pp 305–357
go back to reference Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52CrossRef Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52CrossRef
go back to reference Zheng A, Jiang L, Zhao Z, Huang Z, Zhao K, Wei G, Wang X, He F, Li H (2015) Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29:8027–8034CrossRef Zheng A, Jiang L, Zhao Z, Huang Z, Zhao K, Wei G, Wang X, He F, Li H (2015) Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29:8027–8034CrossRef
go back to reference Zhou M, Eberhardt TL, Xin P, Hse C-Y, Pan H (2016) Liquefaction of torrefied wood using microwave irradiation. Energy Fuels 30:5862–5869CrossRef Zhou M, Eberhardt TL, Xin P, Hse C-Y, Pan H (2016) Liquefaction of torrefied wood using microwave irradiation. Energy Fuels 30:5862–5869CrossRef
Metadata
Title
FTIR-based models for assessment of mass yield and biofuel properties of torrefied wood
Authors
Chi-Leung So
Thomas L. Eberhardt
Publication date
04-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Wood Science and Technology / Issue 1/2018
Print ISSN: 0043-7719
Electronic ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-017-0970-1

Other articles of this Issue 1/2018

Wood Science and Technology 1/2018 Go to the issue

Editorial

Editorial