Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 2/2016

01-06-2016 | Original Article

Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction

Authors: Bimal Acharya, Animesh Dutta

Published in: Biomass Conversion and Biorefinery | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Torrefaction is a mild thermal pretreatment process at temperatures of 200—300 °C in a minimum oxygen environment at a reasonable residence time that enhances the thermochemical properties of biomass in terms of energy density, hydrophobicity, and grindability. Present study uses different samples of biomass: oats from the agricultural family, willow from the woody family, and poultry litter from the non-lignocellulosic family of Ontario. They analyze different fuel characteristics of the torrefied biomass at different temperatures (200—300 °C), residence times (15–45 min), and oxygen concentrations (0–2.4 %) in a macro-TGA. From the experiment, torrefied products have up to 42 % higher heating value than raw biomass. The heating value of 24 MJ/kg for oats, 22 MJ/kg for willow, and 12 MJ/kg for poultry litter are found after torrefaction. Mass yield varies from 42 to 91 %, whereas energy yield varies from 61 to 89 % at different operating temperatures and residence times. Oats show the fastest mass and energy yield, whereas poultry litter shows the least. For hydrophobicity and moisture uptake, the optimum temperature is found to be at 285 °C for willow, 270 °C for oats, and 275 °C for poultry litter at a 45-min residence time. It is observed that all products show hydrophobic characteristics and remain unaffected from biodegradation when they are immersed in water after torrefaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Linghong Z, Chunbao CX, Pascale C (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy 51:969–982 Linghong Z, Chunbao CX, Pascale C (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy 51:969–982
2.
go back to reference Helwig T, Jannasch R, Samson R, DeMaio A, Caumartin D (2013) Agricultural Biomass Residue Inventories and Conversion Systems for Energy Production in Eastern Canada. Prepared for Natural Resources 2002 – Canada [online material accessed on 25 Jan 2013] Helwig T, Jannasch R, Samson R, DeMaio A, Caumartin D (2013) Agricultural Biomass Residue Inventories and Conversion Systems for Energy Production in Eastern Canada. Prepared for Natural Resources 2002 – Canada [online material accessed on 25 Jan 2013]
4.
go back to reference Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuels 87:844–856CrossRef Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuels 87:844–856CrossRef
5.
go back to reference Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Convers Bioref 2(4):349–369CrossRef Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Convers Bioref 2(4):349–369CrossRef
6.
go back to reference Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agricultural residue to enhance combustible properties. Energy Fuel 24(9):4638–4645CrossRef Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agricultural residue to enhance combustible properties. Energy Fuel 24(9):4638–4645CrossRef
7.
go back to reference Bergman PCA, Boersma AR, Kiel JHA, Prins MJ, Ptasinski KJ, Janssen FGGJ (2005) Torrefied biomass for entrained-flow gasification of biomass. Report ECN-C--05-026, ECN Bergman PCA, Boersma AR, Kiel JHA, Prins MJ, Ptasinski KJ, Janssen FGGJ (2005) Torrefied biomass for entrained-flow gasification of biomass. Report ECN-C--05-026, ECN
8.
go back to reference Tumuluru JS, Sokhansanj SJ, Richard H, Wright TC, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7(5):384–401CrossRef Tumuluru JS, Sokhansanj SJ, Richard H, Wright TC, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7(5):384–401CrossRef
9.
go back to reference Svoboda K, Pohorely M, Hartman M, Martinec J (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process Technol 90(5):62–635CrossRef Svoboda K, Pohorely M, Hartman M, Martinec J (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process Technol 90(5):62–635CrossRef
10.
go back to reference Arias B, Pedida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175CrossRef Arias B, Pedida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175CrossRef
11.
go back to reference Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy AlChE J 28(3):427–434CrossRef Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy AlChE J 28(3):427–434CrossRef
12.
go back to reference Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78CrossRef Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78CrossRef
13.
go back to reference Obernberger I (1998) Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy 14(1):33–56CrossRef Obernberger I (1998) Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy 14(1):33–56CrossRef
14.
go back to reference Dutta A, Prabir B (2003) An improvement of cluster-renewal model for estimation of heat transfer on the water-walls of commercial CFB boilers. ASME: 235–244 Dutta A, Prabir B (2003) An improvement of cluster-renewal model for estimation of heat transfer on the water-walls of commercial CFB boilers. ASME: 235–244
15.
go back to reference Dungana A, Dutta A, Basu P (2012) Torrefaction of non-lignocellulose biomass waste. Can J Chem Eng 90(1):186–195CrossRef Dungana A, Dutta A, Basu P (2012) Torrefaction of non-lignocellulose biomass waste. Can J Chem Eng 90(1):186–195CrossRef
16.
go back to reference Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletization. Elsevier Energy 33:1206–1223 Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletization. Elsevier Energy 33:1206–1223
17.
go back to reference Wolfgang S, Craig C, Jens KH, Anand RS, JesperA LS, Ulrik BH (2011) Pelletizing properties of torrefied spruce biomass. Bioenergy 35:4690–4698 Wolfgang S, Craig C, Jens KH, Anand RS, JesperA LS, Ulrik BH (2011) Pelletizing properties of torrefied spruce biomass. Bioenergy 35:4690–4698
18.
go back to reference Felfli FF, Luengo CA, Suarez JA, Beaton PA (2005) Wood briquette torrefaction. Energy Sustain Dev 9:19–22CrossRef Felfli FF, Luengo CA, Suarez JA, Beaton PA (2005) Wood briquette torrefaction. Energy Sustain Dev 9:19–22CrossRef
19.
go back to reference Acharya B, Dutta A, Mahmud S, Tushar M, Leon M (2014) Ash analysis of poultry litter, willow and oats for combustion in boilers. J Biomass Biofuel 1 Acharya B, Dutta A, Mahmud S, Tushar M, Leon M (2014) Ash analysis of poultry litter, willow and oats for combustion in boilers. J Biomass Biofuel 1
20.
go back to reference Chen W, Kuo P (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2):803–811CrossRef Chen W, Kuo P (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2):803–811CrossRef
21.
go back to reference Verhoeff F, Arnuelos AA, Boersma AR, Pels JR, Lenselink J, Kiel JHA, Schukken H (2011) Torrefaction technology for the production of solid bioenergy carriers from biomass and waste ECN-E-11-039 Verhoeff F, Arnuelos AA, Boersma AR, Pels JR, Lenselink J, Kiel JHA, Schukken H (2011) Torrefaction technology for the production of solid bioenergy carriers from biomass and waste ECN-E-11-039
22.
go back to reference Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191CrossRef Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191CrossRef
23.
go back to reference Acharya B, Dutta A (2013) Characterization of torrefied willow for combustion application. J Biobased Mater Bioenergy 7(6):667–674CrossRef Acharya B, Dutta A (2013) Characterization of torrefied willow for combustion application. J Biobased Mater Bioenergy 7(6):667–674CrossRef
Metadata
Title
Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction
Authors
Bimal Acharya
Animesh Dutta
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 2/2016
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0170-x

Other articles of this Issue 2/2016

Biomass Conversion and Biorefinery 2/2016 Go to the issue