Skip to main content
Top

2024 | OriginalPaper | Chapter

Fullerenes and Its’ Derivatives: Marvels in Supercapacitor Technology

Authors : Dipanwita Majumdar, Rudra Sarkar

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocarbons are one of the most popular electrode constituents employed to enhance the performance of multifunctional supercapacitors. Fullerenes, the unique zero-dimensional nanocarbons, particularly the C60 variety, have been widely explored in designing high-performing supercapacitors for their unique structural, optical, electrical, thermal, mechanical, and other superior characteristic features. Various fullerene-derived micro-/nanostructured materials have been employed in the formulations of smart electrodes with excellent electrical conductivity, improved charge mobility and enhanced electrochemical activity for advanced energy storage applications. Further, the functionalized fullerenes facilitate easy coupling with suitable semiconducting components to form diversified heterostructures with smooth interfaces, facilitating easy and ultrafast charge transfer phenomena, leading to boosted electrochemical activity in addition to enhanced mechanical tenacity. Fullerenes also serve as essential fillers in binary/ternary/polynary nanocomposite electrodes to obtain versatile, large surface-based, cross-linked architectures with optimum porosity for uninterrupted ion and electron transfer processes. Thus, meticulously engineered fullerene-based materials are laying the foundations for manufacturing flexible electrochemical energy storage devices, intended for advanced technical applications in vivid high-tech arenas. This chapter highlights the recent progress of fullerene-based nanomaterials, embracing the existing challenges confronted and the plausible prospects that are evolving with this highly promising nanocarbons system in the domain of supercapacitor technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Majumdar, D., Mandal, M., Bhattacharya, S.K.: Journey from supercapacitors to supercapatteries, recent advancements in electrochemical energy storage systems. Emergent Mater. 3, 347–367 (2020)CrossRef Majumdar, D., Mandal, M., Bhattacharya, S.K.: Journey from supercapacitors to supercapatteries, recent advancements in electrochemical energy storage systems. Emergent Mater. 3, 347–367 (2020)CrossRef
3.
go back to reference Kittner, N., Lill, F., Kammen, D.: Energy storage deployment and innovation for the clean energy transition. Nature Energy 2(9), 17125 (2017) Kittner, N., Lill, F., Kammen, D.: Energy storage deployment and innovation for the clean energy transition. Nature Energy 2(9), 17125 (2017)
4.
go back to reference Majumdar, D., Ghosh, S.: Recent advancements of copper oxide-based nanomaterials for supercapacitors applications. J. Energy Storage 34, 101995 (2021) Majumdar, D., Ghosh, S.: Recent advancements of copper oxide-based nanomaterials for supercapacitors applications. J. Energy Storage 34, 101995 (2021)
5.
go back to reference Gogotsi, Y., Simon, P.: True performance metrics in electrochemical energy storage. Science 334, 917 (2011)CrossRefPubMed Gogotsi, Y., Simon, P.: True performance metrics in electrochemical energy storage. Science 334, 917 (2011)CrossRefPubMed
6.
go back to reference Zhang, C., Lv, W., Tao, Y., Yang, Q.: Towards superior volumetric performance, design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390 (2015) Zhang, C., Lv, W., Tao, Y., Yang, Q.: Towards superior volumetric performance, design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390 (2015)
7.
go back to reference Wu, X., Liu, R., Zhao, J., Fan, Z.: Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Mater. Sci. 3, 241–267 (2021)CrossRef Wu, X., Liu, R., Zhao, J., Fan, Z.: Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Mater. Sci. 3, 241–267 (2021)CrossRef
8.
go back to reference Forouzandeh, P., Kumaravel, V., Pillai, S.C.: Electrode materials for supercapacitors: a review of recent advances. Catalysts 10, 969 (2020)CrossRef Forouzandeh, P., Kumaravel, V., Pillai, S.C.: Electrode materials for supercapacitors: a review of recent advances. Catalysts 10, 969 (2020)CrossRef
9.
go back to reference Liu, Z., Zhang, S., Wang, L., Wei, T., Qiu, Z., Fan, Z.: High-efficiency utilization of carbon materials for supercapacitors. Nano Select 1, 244–262 (2020)CrossRef Liu, Z., Zhang, S., Wang, L., Wei, T., Qiu, Z., Fan, Z.: High-efficiency utilization of carbon materials for supercapacitors. Nano Select 1, 244–262 (2020)CrossRef
10.
go back to reference Das, K., Majumdar, D.: Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. J. Electroanal. Chem. 905, 115973 (2022) Das, K., Majumdar, D.: Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. J. Electroanal. Chem. 905, 115973 (2022)
11.
go back to reference Ren, Z., Li, Y., Yu, J.: A flexible supercapacitor with high true performance. Science 9, 138–148 (2018) Ren, Z., Li, Y., Yu, J.: A flexible supercapacitor with high true performance. Science 9, 138–148 (2018)
12.
go back to reference Yin, J., Zhang, W., Alhebshi, N.A., Salah, N., Alshareef, H.N.: Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4, 1900853 (2020) Yin, J., Zhang, W., Alhebshi, N.A., Salah, N., Alshareef, H.N.: Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4, 1900853 (2020)
13.
go back to reference Zhong, M., Zhang, M., Li, X.: Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4, 950–985 (2022)CrossRef Zhong, M., Zhang, M., Li, X.: Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4, 950–985 (2022)CrossRef
14.
go back to reference Kroto, H., Heath, J., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef Kroto, H., Heath, J., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef
15.
go back to reference Khan, A.J., Hanif, M., Javed, M.S., Hussain, S., Liu, Z.: Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors. J. Mater. Sci; Mater. Electron. 30, 8568–8576 (2019)CrossRef Khan, A.J., Hanif, M., Javed, M.S., Hussain, S., Liu, Z.: Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors. J. Mater. Sci; Mater. Electron. 30, 8568–8576 (2019)CrossRef
16.
go back to reference Collavini, S., Delgado, J.L.: Fullerenes—the stars of photovoltaics, sustainable. Energy Fuels 2, 2480–2493 (2018) Collavini, S., Delgado, J.L.: Fullerenes—the stars of photovoltaics, sustainable. Energy Fuels 2, 2480–2493 (2018)
17.
go back to reference Xu, T., Shen, W., Huang, W., Lu, X.: Fullerene micro/nanostructures: controlled synthesis and energy applications. Mater. Today Nano 11, 100081 (2020) Xu, T., Shen, W., Huang, W., Lu, X.: Fullerene micro/nanostructures: controlled synthesis and energy applications. Mater. Today Nano 11, 100081 (2020)
18.
go back to reference Ma, J., Guo, Q., Gao, H.L., Qin, X.: Synthesis of C60/graphene composite as electrode in supercapacitors. Fullerenes, Nanotubes and Carbon Nanostructures 23(6), 477–482 (2015) Ma, J., Guo, Q., Gao, H.L., Qin, X.: Synthesis of C60/graphene composite as electrode in supercapacitors. Fullerenes, Nanotubes and Carbon Nanostructures 23(6), 477–482 (2015)
19.
go back to reference Zhan, C., Pham, T.A., Cerón, M.R., Campbell, P.G., Vedharathinam, V., Otani, M., Jiang, D.E., Biener, J., Wood, B.C., Biener, M.: Origins and implications of interfacial capacitance enhancements in C60-modified graphene supercapacitors. ACS Appl. Mater. Interfaces 10, 36860–36865 (2018)CrossRefPubMed Zhan, C., Pham, T.A., Cerón, M.R., Campbell, P.G., Vedharathinam, V., Otani, M., Jiang, D.E., Biener, J., Wood, B.C., Biener, M.: Origins and implications of interfacial capacitance enhancements in C60-modified graphene supercapacitors. ACS Appl. Mater. Interfaces 10, 36860–36865 (2018)CrossRefPubMed
20.
go back to reference Basant, A., Ahmed, B., Nageh, A.: Fullerene C76: an unexplored superior electrode material with wide operating potential window for high-performance supercapacitors. ChemElectroChem 7(7), 1672–1678 (2020)CrossRef Basant, A., Ahmed, B., Nageh, A.: Fullerene C76: an unexplored superior electrode material with wide operating potential window for high-performance supercapacitors. ChemElectroChem 7(7), 1672–1678 (2020)CrossRef
21.
go back to reference Shrestha, L.K., Shrestha, R.G., Yamauchi, Y., Hill, J.P., Nishimura, T., Miyazawa, K.I., Kawai, T., Okada, S., Wakabayashi, K., Ariga, K.: Nanoporous carbon tubes from fullerene crystals as the p-electron carbon source. Angew. Chem. Int. Ed. 54, 951–955 (2015)CrossRef Shrestha, L.K., Shrestha, R.G., Yamauchi, Y., Hill, J.P., Nishimura, T., Miyazawa, K.I., Kawai, T., Okada, S., Wakabayashi, K., Ariga, K.: Nanoporous carbon tubes from fullerene crystals as the p-electron carbon source. Angew. Chem. Int. Ed. 54, 951–955 (2015)CrossRef
22.
go back to reference Bairi, P., Shrestha, R.G., Hill, J.P., Nishimura, T., Ariga, K., Shrestha, L.K.: Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high-performance electrode material for advanced supercapacitors. J. Mater. Chem. A 4, 13899–13906 (2016)CrossRef Bairi, P., Shrestha, R.G., Hill, J.P., Nishimura, T., Ariga, K., Shrestha, L.K.: Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high-performance electrode material for advanced supercapacitors. J. Mater. Chem. A 4, 13899–13906 (2016)CrossRef
23.
go back to reference Tang, Q., Bairi, P., Shrestha, R.G., Hill, J.P., Ariga, K., Zeng, H., Ji, Q., Shrestha, L.K.: Quasi 2D mesoporous carbon micro belts derived from fullerene crystals as an electrode material for electrochemical supercapacitors. ACS Appl. Mater. Interfaces 9, 44458–44465 (2017) Tang, Q., Bairi, P., Shrestha, R.G., Hill, J.P., Ariga, K., Zeng, H., Ji, Q., Shrestha, L.K.: Quasi 2D mesoporous carbon micro belts derived from fullerene crystals as an electrode material for electrochemical supercapacitors. ACS Appl. Mater. Interfaces 9, 44458–44465 (2017)
24.
go back to reference Bairi, P., Maji, S., Hill, J.P., Kim, J.H., Ariga, K., Shrestha, L.K.: Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. J. Mater. Chem. A 7, 12654–12660 (2019)CrossRef Bairi, P., Maji, S., Hill, J.P., Kim, J.H., Ariga, K., Shrestha, L.K.: Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. J. Mater. Chem. A 7, 12654–12660 (2019)CrossRef
25.
go back to reference Okajima, K., Ikeda, A., Kamoshita, K., Sudoh, M.: High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim. Acta 51, 972–977 (2005)CrossRef Okajima, K., Ikeda, A., Kamoshita, K., Sudoh, M.: High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim. Acta 51, 972–977 (2005)CrossRef
26.
go back to reference Ju, H., Lu, X.: A high-performance supercapacitor based on KOH activated 1D C70 microstructures. Adv. Energy Mater. 5, 1500871 (2015) Ju, H., Lu, X.: A high-performance supercapacitor based on KOH activated 1D C70 microstructures. Adv. Energy Mater. 5, 1500871 (2015)
27.
go back to reference Tan, Z., Ni, K., Chen, G., Zeng, W., Tao, Z., Ikram, M., Zhang, Q., Wang, H., Sun, L., Zhu, X., Wu, X., Ji, H., Ruoff, S., Zhu, Y.: Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 29, 1603414 (2017) Tan, Z., Ni, K., Chen, G., Zeng, W., Tao, Z., Ikram, M., Zhang, Q., Wang, H., Sun, L., Zhu, X., Wu, X., Ji, H., Ruoff, S., Zhu, Y.: Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 29, 1603414 (2017)
28.
go back to reference Peng, Z., Hu, Y., Wang, J., Liu, S., Li, C., Jiang, Q., Lu, J., Zeng, X., Peng, P., Li, F.: Fullerene-based in situ doping of N and Fe into a 3D cross-like hierarchical carbon composite for high-performance supercapacitors. Adv. Energy Mater. 9, 1802928 (2019) Peng, Z., Hu, Y., Wang, J., Liu, S., Li, C., Jiang, Q., Lu, J., Zeng, X., Peng, P., Li, F.: Fullerene-based in situ doping of N and Fe into a 3D cross-like hierarchical carbon composite for high-performance supercapacitors. Adv. Energy Mater. 9, 1802928 (2019)
29.
go back to reference Lu, Q., Wang, X., Chen, M., Lu, B., Liu, M., Xing, T., Wang, X.: Manganese dioxide/ant-nest-like hierarchical porous carbon composite with robust supercapacitive performances. ACS Sustain. Chem. Eng. 6, 7362–7371 (2018)CrossRef Lu, Q., Wang, X., Chen, M., Lu, B., Liu, M., Xing, T., Wang, X.: Manganese dioxide/ant-nest-like hierarchical porous carbon composite with robust supercapacitive performances. ACS Sustain. Chem. Eng. 6, 7362–7371 (2018)CrossRef
30.
go back to reference Mohanty, R., Swain, G., Parida, K., Parida, K.: Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 919, 165753 (2022) Mohanty, R., Swain, G., Parida, K., Parida, K.: Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 919, 165753 (2022)
31.
go back to reference Kim, Y.H., Jin, X., Hwang, S.: Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes. J. Mater. Chem. A 7, 10971 (2019) Kim, Y.H., Jin, X., Hwang, S.: Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes. J. Mater. Chem. A 7, 10971 (2019)
32.
go back to reference Majumdar, D.: Functionalized-graphene/polyaniline nanocomposites as proficient, energy storage material: an overview. Innov. Energy Res. 5, 145 (2020) Majumdar, D.: Functionalized-graphene/polyaniline nanocomposites as proficient, energy storage material: an overview. Innov. Energy Res. 5, 145 (2020)
33.
go back to reference Xiong, S., Yang, F., Jiang, H., Ma, J., Lu, X.: Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85, 235–242 (2012)CrossRef Xiong, S., Yang, F., Jiang, H., Ma, J., Lu, X.: Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85, 235–242 (2012)CrossRef
34.
go back to reference Wang, H., Yan, X., Piao, G.: A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite. Electrochim. Acta 231, 264–271 (2017)CrossRef Wang, H., Yan, X., Piao, G.: A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite. Electrochim. Acta 231, 264–271 (2017)CrossRef
35.
go back to reference Kausar, A.: Fullerene reinforced polymeric nanocomposites for energy storage-status and prognoses. Front. Mater. 9, 150 (2022) Kausar, A.: Fullerene reinforced polymeric nanocomposites for energy storage-status and prognoses. Front. Mater. 9, 150 (2022)
36.
go back to reference Ramadan, A., Anas, M., Ebrahim, S., Soliman, M., Abou-Aly, A.: Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode. Int. J. Hydrogen Energy 45, 16254–16265 (2020)CrossRef Ramadan, A., Anas, M., Ebrahim, S., Soliman, M., Abou-Aly, A.: Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode. Int. J. Hydrogen Energy 45, 16254–16265 (2020)CrossRef
37.
go back to reference Wang, Y.Z., Wang, Q., Xie, H.Y., Ho, L.P., Tan, D.M.F., Diao, Y.Y., Chen, W., Xie, X.N.: Fabrication of highly ordered P3HT: PCBM nanostructures and its application as a supercapacitive electrode. Nanoscale 4, 3725 (2012)CrossRefPubMed Wang, Y.Z., Wang, Q., Xie, H.Y., Ho, L.P., Tan, D.M.F., Diao, Y.Y., Chen, W., Xie, X.N.: Fabrication of highly ordered P3HT: PCBM nanostructures and its application as a supercapacitive electrode. Nanoscale 4, 3725 (2012)CrossRefPubMed
38.
go back to reference Meyer, J., Geim, A., Katsnelson, M.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefPubMed Meyer, J., Geim, A., Katsnelson, M.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefPubMed
39.
go back to reference Fileti, E., Colherinhas, G.: Investigating the asymmetry in the EDL response of C60/graphene supercapacitors. Phys. Chem. Chem. Phys. 21, 15362–15371 (2019)CrossRefPubMed Fileti, E., Colherinhas, G.: Investigating the asymmetry in the EDL response of C60/graphene supercapacitors. Phys. Chem. Chem. Phys. 21, 15362–15371 (2019)CrossRefPubMed
40.
go back to reference Cheng, L., Li, J., Li, J., Qiu, X., Xue, H., Evgenyevna, I.: Construction of three-dimensional all-carbon C60/graphene hybrids and their use in high-performance supercapacitors. New Carbon Mater. 35, 684–695 (2020)CrossRef Cheng, L., Li, J., Li, J., Qiu, X., Xue, H., Evgenyevna, I.: Construction of three-dimensional all-carbon C60/graphene hybrids and their use in high-performance supercapacitors. New Carbon Mater. 35, 684–695 (2020)CrossRef
41.
go back to reference Yong, V., Hahn, H.: Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors. Adv. Nanoparticles 2, 1–5 (2013)CrossRef Yong, V., Hahn, H.: Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors. Adv. Nanoparticles 2, 1–5 (2013)CrossRef
42.
go back to reference Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef
43.
go back to reference Jaiswal, R., Saha, U., Goswami, H., Srivastava, A., Prasad, E.: ‘Pillar effect’ of chemically bonded fullerene in enhancing supercapacitance performances of partially reduced fullerenol graphene oxide hybrid electrode material. Electrochim. Acta 283, 269–290 (2018)CrossRef Jaiswal, R., Saha, U., Goswami, H., Srivastava, A., Prasad, E.: ‘Pillar effect’ of chemically bonded fullerene in enhancing supercapacitance performances of partially reduced fullerenol graphene oxide hybrid electrode material. Electrochim. Acta 283, 269–290 (2018)CrossRef
44.
go back to reference Fedorczyk, A., Krogul-Sobczak, A., Piotrowski, P.: Anthracene modified graphene for C60/C70 fullerenes capture and construction of energy storage materials. Chem. Pap. 76, 2041–2050 (2022)CrossRef Fedorczyk, A., Krogul-Sobczak, A., Piotrowski, P.: Anthracene modified graphene for C60/C70 fullerenes capture and construction of energy storage materials. Chem. Pap. 76, 2041–2050 (2022)CrossRef
45.
go back to reference Senthilkumar, A.K., Prabakar, S.J.R., Park, C., Jeong, S., Lah, M.S., Pyo, M.: Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. J. Mater. Chem. A 4, 1663–1670 (2016)CrossRef Senthilkumar, A.K., Prabakar, S.J.R., Park, C., Jeong, S., Lah, M.S., Pyo, M.: Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. J. Mater. Chem. A 4, 1663–1670 (2016)CrossRef
46.
go back to reference Baskar, A.V., Ruban, A.M., Davidraj, J.M., Singh, G., Al-Muhtaseb, A.H., Lee, J.M.: Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull. Chem. Soc. Jpn. 94, 133–140 (2021)CrossRef Baskar, A.V., Ruban, A.M., Davidraj, J.M., Singh, G., Al-Muhtaseb, A.H., Lee, J.M.: Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull. Chem. Soc. Jpn. 94, 133–140 (2021)CrossRef
48.
go back to reference Piotrowski, P., Fedorczyk, A., Grabowski, J., Krogul-Sobczak, A.: Functionalization of graphene by π–π stacking with C60/C70/Sc3N@C80 fullerene derivatives for supercapacitor electrode materials. C J. Carbon Res. 8, 1–17 (2022)CrossRef Piotrowski, P., Fedorczyk, A., Grabowski, J., Krogul-Sobczak, A.: Functionalization of graphene by π–π stacking with C60/C70/Sc3N@C80 fullerene derivatives for supercapacitor electrode materials. C J. Carbon Res. 8, 1–17 (2022)CrossRef
49.
go back to reference Jiang, B., Zhang, G., Tang, Q., Meng, F., Zhou, D., Zhao, W.: Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Mater. Adv. 3, 1539–1546 (2022)CrossRef Jiang, B., Zhang, G., Tang, Q., Meng, F., Zhou, D., Zhao, W.: Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Mater. Adv. 3, 1539–1546 (2022)CrossRef
50.
go back to reference Sohouli, E., Adib, K., Maddah, B., Najafi, M.: Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite. J. Energy Storage 52, 104987 (2022) Sohouli, E., Adib, K., Maddah, B., Najafi, M.: Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite. J. Energy Storage 52, 104987 (2022)
Metadata
Title
Fullerenes and Its’ Derivatives: Marvels in Supercapacitor Technology
Authors
Dipanwita Majumdar
Rudra Sarkar
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_14