Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-02-2020 | Original Article | Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Fully-connected LSTM–CRF on medical concept extraction

Journal:
International Journal of Machine Learning and Cybernetics > Issue 9/2020
Authors:
Jie Ji, Bairui Chen, Hongcheng Jiang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Patient symptoms, test results, and treatment information have been taking down in extensive electronic records. Specifically, the named entity recognition of these medical concepts has high application value in the clinical field. However, due to issues like patient privacy, labeled data is expensive and difficult to find. In 2010, the i2b2/VA Natural Language Processing Challenge started a conceptual extraction task for electronic medical records. One of the task requirements is to classify natural language descriptions as corresponding concept types. In this paper, we proposed a new fully-connected LSTM network, while the LSTM + CRF model is used as the framework to test the effects of various LSTM structures. The real-data experiments demonstrate that the proposed fully-connected LSTM outperforms many of the mainstream LSTM structures in the quantitative evaluation. It is confirmed that the multi-layer bidirectional fully-connected LSTM cooperates with the character level word vector and the pre-trained word embedding, which achieves similar performance compared with the state-of-the-art methods, avoiding the using of prior knowledge data and ultra-high dimensional feature representation. Moreover, this end-to-end training method saves a lot of feature engineering work and storage spaces.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue