Skip to main content
Top
Published in: Cognitive Computation 3/2020

29-11-2019

Functional Brain Network Classification for Alzheimer’s Disease Detection with Deep Features and Extreme Learning Machine

Published in: Cognitive Computation | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The human brain can be inherently modeled as a brain network, where nodes denote billions of neurons and edges denote massive connections between neurons. Analysis on functional brain networks provides powerful abilities to discover potential mechanisms of human brain, and to aid brain disease detection, such as AD (Alzheimer’s disease). Effective discrimination of patients of AD and MCI (mild cognitive impairment) from NC (normal control) is important for the early diagnosis of AD. Therefore, this paper explores the problem of brain network classification for AD detection. Two deep learning methods of functional brain network classification are designed. The convolutional learning method learns the deep regional-connectivity features, while the recurrent learning method learns the deep adjacent positional features. The ELM (extreme learning machine)-boosted structure is also implemented to further improve the learning ability. Extensive experiments are conducted to evaluate and compare the AUC (area under curve), accuracy, recall, and training time of the proposed methods on a real-world dataset. Results indicate that (1) the proposed methods which learn deep features directly from brain networks outperform shallow learning methods and (2) models with the ELM-boosted structure achieve a higher performance. This paper explores the brain networks learning with deep features and ELM. The results demonstrate that the proposed methods provide a satisfactory learning ability in the application of AD detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with Valence-Arousal fMRI dataset of brain. Cogn Comput 2019;11(2):227–240. Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with Valence-Arousal fMRI dataset of brain. Cogn Comput 2019;11(2):227–240.
2.
go back to reference Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, et al. Prediction of individual brain maturity using fMRI. Science 2010;329(5997):1358–1361.PubMedPubMedCentral Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, et al. Prediction of individual brain maturity using fMRI. Science 2010;329(5997):1358–1361.PubMedPubMedCentral
3.
go back to reference Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph 2018;65:115–128.PubMed Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph 2018;65:115–128.PubMed
4.
go back to reference Wang X, Ren Y, Zhang W. 2017. Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features. Computational and mathematical methods in medicine, Vol 2017. Wang X, Ren Y, Zhang W. 2017. Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features. Computational and mathematical methods in medicine, Vol 2017.
5.
go back to reference Termenon M, Graña M, Savio A, Akusok A, Miche Y, Björk KM, Lendasse A. Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing 2016;174:344–351. Termenon M, Graña M, Savio A, Akusok A, Miche Y, Björk KM, Lendasse A. Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing 2016;174:344–351.
6.
go back to reference Liu J, Li M, Lan W, Wu F-X, Pan Y, Wang J. 2016. Classification of alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Transactions on Computational Biology and Bioinformatics. Liu J, Li M, Lan W, Wu F-X, Pan Y, Wang J. 2016. Classification of alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Transactions on Computational Biology and Bioinformatics.
7.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMed Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.PubMed
8.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K. 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Symposium on Neural Networks, Vol 2. Huang G-B, Zhu Q-Y, Siew C-K. 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Symposium on Neural Networks, Vol 2.
9.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70:489–501. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70:489–501.
10.
11.
go back to reference Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100(1):253–258.PubMed Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100(1):253–258.PubMed
12.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52(3):1059–1069.PubMed Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52(3):1059–1069.PubMed
13.
go back to reference Liu X, Zeng Y, Zhang T, Xu B. Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn Comput 2016;8(5):967–981. Liu X, Zeng Y, Zhang T, Xu B. Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn Comput 2016;8(5):967–981.
14.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273.
15.
go back to reference Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Brain Connect 2011;1(1):13–36.PubMed Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Brain Connect 2011;1(1):13–36.PubMed
16.
go back to reference Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods 2012;17(3):399–417.PubMed Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods 2012;17(3):399–417.PubMed
17.
18.
go back to reference Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B Biological Sciences 2006;273(1585):503. Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B Biological Sciences 2006;273(1585):503.
19.
go back to reference Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12(6):512–523.PubMed Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12(6):512–523.PubMed
20.
go back to reference Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience the Official Journal of the Society for Neuroscience 2006;26(1):63. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience the Official Journal of the Society for Neuroscience 2006;26(1):63.
21.
go back to reference Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005;15(9):387–413. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005;15(9):387–413.
22.
go back to reference Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage 2009;44(3):715.PubMed Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage 2009;44(3):715.PubMed
23.
go back to reference Newman M. The structure and function of complex networks. SIAM Rev 2003;45(2):167–256. Newman M. The structure and function of complex networks. SIAM Rev 2003;45(2):167–256.
24.
go back to reference Zhao X, Wang G, Bi X, Gong P, Zhao Y. XML Document classification based on ELM. Neurocomputing 2011;74:2444–2451. Zhao X, Wang G, Bi X, Gong P, Zhao Y. XML Document classification based on ELM. Neurocomputing 2011;74:2444–2451.
25.
go back to reference Zhao X, Bi X, Qiao B. Probability based voting extreme learning machine for multiclass XML documents classification. World Wide Web 2014;17(5):1217–1231. Zhao X, Bi X, Qiao B. Probability based voting extreme learning machine for multiclass XML documents classification. World Wide Web 2014;17(5):1217–1231.
26.
go back to reference Zhao X, Bi X, Wang G, Zhang Z, Yang H. Uncertain xml documents classification using extreme learning machine. Neurocomputing 2016;174(Part A):375–382. Zhao X, Bi X, Wang G, Zhang Z, Yang H. Uncertain xml documents classification using extreme learning machine. Neurocomputing 2016;174(Part A):375–382.
27.
go back to reference Wang G, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72:262–268. Wang G, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72:262–268.
28.
go back to reference Duan L, Bao M, Cui S, Qiao Y, Miao J. Motor imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 2017;9(6):758–765. Duan L, Bao M, Cui S, Qiao Y, Miao J. Motor imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 2017;9(6):758–765.
29.
go back to reference Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput 2018;10(2):368–380. Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput 2018;10(2):368–380.
30.
go back to reference Bi X, Ma H, Li J, Ma Y, Chen D. 2018. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery. Journal of Ambient Intelligence and Humanized Computing. Bi X, Ma H, Li J, Ma Y, Chen D. 2018. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery. Journal of Ambient Intelligence and Humanized Computing.
31.
go back to reference Ma Y, Yuan Y, Wang G, Bi X, Qin H. Trust-aware personalized route query using extreme learning machine in location-based social networks. Cogn Comput 2018;10(6):965–979. Ma Y, Yuan Y, Wang G, Bi X, Qin H. Trust-aware personalized route query using extreme learning machine in location-based social networks. Cogn Comput 2018;10(6):965–979.
32.
go back to reference Zhang Z, Zhao X. G Wang, FE-ELM: A new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–670. Zhang Z, Zhao X. G Wang, FE-ELM: A new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–670.
33.
go back to reference Zhang Z, Zhao X, Wang G, Bi X. A new point-of-interest classification model with an extreme learning machine. Cogn Comput 2018;10(6):951–964. Zhang Z, Zhao X, Wang G, Bi X. A new point-of-interest classification model with an extreme learning machine. Cogn Comput 2018;10(6):951–964.
34.
go back to reference Pang J, Zhao Y, Xu J, Gu Y, Yu G. Super-graph classification based on composite subgraph features and extreme learning machine. Cogn Comput 2018;10(6):922–936. Pang J, Zhao Y, Xu J, Gu Y, Yu G. Super-graph classification based on composite subgraph features and extreme learning machine. Cogn Comput 2018;10(6):922–936.
35.
go back to reference Sun Y, Li B, Yuan Y, Bi X, Zhao X, Wang G. Big graph classification frameworks based on extreme learning machine. Neurocomputing 2019;330:317–327. Sun Y, Li B, Yuan Y, Bi X, Zhao X, Wang G. Big graph classification frameworks based on extreme learning machine. Neurocomputing 2019;330:317–327.
36.
go back to reference Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–2443. Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–2443.
37.
go back to reference Sun Y, Yuan Y, Wang G. Extreme learning machine for classification over uncertain data. Neurocomputing 2014;128:500–506. Sun Y, Yuan Y, Wang G. Extreme learning machine for classification over uncertain data. Neurocomputing 2014;128:500–506.
38.
go back to reference Zhao X, Ma Z, Li B, Zhang Z, Liu H. ELM-based convolutional neural networks making move prediction in Go. Soft Comput 2018;22(11):3591–3601. Zhao X, Ma Z, Li B, Zhang Z, Liu H. ELM-based convolutional neural networks making move prediction in Go. Soft Comput 2018;22(11):3591–3601.
39.
go back to reference Wang T, Cao J, Lai X, Chen B. Deep weighted extreme learning machine. Cogn Comput 2018;10 (6):890–907. Wang T, Cao J, Lai X, Chen B. Deep weighted extreme learning machine. Cogn Comput 2018;10 (6):890–907.
40.
go back to reference LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput 1989;1(4):541–551. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput 1989;1(4):541–551.
41.
go back to reference Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 1982;79(8):2554–2558.PubMed Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 1982;79(8):2554–2558.PubMed
42.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Adv Neural Inf Process Syst 2014;3:2672–2680. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Adv Neural Inf Process Syst 2014;3:2672–2680.
43.
go back to reference Yan CG, Wang XD, Zuo XN, Zang YF. Dpabi: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016;14(3):339–351.PubMed Yan CG, Wang XD, Zuo XN, Zang YF. Dpabi: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016;14(3):339–351.PubMed
44.
go back to reference Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–297. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–297.
Metadata
Title
Functional Brain Network Classification for Alzheimer’s Disease Detection with Deep Features and Extreme Learning Machine
Publication date
29-11-2019
Published in
Cognitive Computation / Issue 3/2020
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09688-2

Other articles of this Issue 3/2020

Cognitive Computation 3/2020 Go to the issue

Premium Partner