Skip to main content
Top
Published in:

20-09-2022

Functional Equivariance and Conservation Laws in Numerical Integration

Authors: Robert I. McLachlan, Ari Stern

Published in: Foundations of Computational Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For some methods, such as implicit Runge–Kutta methods, \( \Phi _{ \Delta t , f } (y) \) might only be defined for sufficiently small \( \Delta t \). Including such integrators requires only the minor modification of viewing \( \Phi _f \) as a partial function.
 
Literature
1.
go back to reference R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, vol. 75 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1988. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, vol. 75 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1988.
2.
go back to reference A. L. Araújo, A. Murua, and J. M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Numer. Anal., 34 (1997), pp. 1926–1947.MathSciNetCrossRef A. L. Araújo, A. Murua, and J. M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Numer. Anal., 34 (1997), pp. 1926–1947.MathSciNetCrossRef
3.
go back to reference U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg–de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.MathSciNetCrossRef U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg–de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.MathSciNetCrossRef
4.
go back to reference Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math., 21 (2021), pp. 1075–1098.MathSciNetCrossRef Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math., 21 (2021), pp. 1075–1098.MathSciNetCrossRef
5.
6.
go back to reference T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.ADSMathSciNetCrossRef T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.ADSMathSciNetCrossRef
7.
go back to reference K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46–57.ADSMathSciNetCrossRef K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46–57.ADSMathSciNetCrossRef
8.
go back to reference J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.CrossRef J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.CrossRef
9.
go back to reference P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), pp. 381–405.MathSciNetCrossRef P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), pp. 381–405.MathSciNetCrossRef
10.
go back to reference B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.MathSciNetCrossRef B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.MathSciNetCrossRef
11.
go back to reference T. de Donder, Théorie Invariantive du Calcul des Variations, Gauthier-Villars, second ed., 1935. T. de Donder, Théorie Invariantive du Calcul des Variations, Gauthier-Villars, second ed., 1935.
13.
go back to reference M. Günther, A. Sandu, and A. Zanna, Symplectic GARK methods for Hamiltonian systems, 2021. Preprint, arXiv:2103.04110 [math.NA]. M. Günther, A. Sandu, and A. Zanna, Symplectic GARK methods for Hamiltonian systems, 2021. Preprint, arXiv:​2103.​04110 [math.NA].
14.
go back to reference E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1980/81), pp. 431–445. E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1980/81), pp. 431–445.
15.
go back to reference E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010.
16.
go back to reference A. Iserles, G. R. W. Quispel, and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), pp. 351–378.MathSciNetCrossRef A. Iserles, G. R. W. Quispel, and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), pp. 351–378.MathSciNetCrossRef
18.
go back to reference R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), pp. 599–622.MathSciNetCrossRef R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), pp. 599–622.MathSciNetCrossRef
19.
go back to reference R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), pp. 1689–1705. R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), pp. 1689–1705.
20.
21.
go back to reference R. I. McLachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM Journal on Scientific Computing, 36 (2014), pp. A2199–A2226.MathSciNetCrossRef R. I. McLachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM Journal on Scientific Computing, 36 (2014), pp. A2199–A2226.MathSciNetCrossRef
22.
go back to reference R. I. McLachlan and A. Stern, Multisymplecticity of hybridizable discontinuous Galerkin methods, Found. Comput. Math., 20 (2020), pp. 35–69.MathSciNetCrossRef R. I. McLachlan and A. Stern, Multisymplecticity of hybridizable discontinuous Galerkin methods, Found. Comput. Math., 20 (2020), pp. 35–69.MathSciNetCrossRef
23.
24.
25.
go back to reference P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1993. P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1993.
26.
go back to reference S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.ADSMathSciNetCrossRef S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.ADSMathSciNetCrossRef
27.
go back to reference B. N. Ryland and R. I. McLachlan, On multisymplecticity of partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), pp. 1318–1340.MathSciNetCrossRef B. N. Ryland and R. I. McLachlan, On multisymplecticity of partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), pp. 1318–1340.MathSciNetCrossRef
28.
go back to reference M. A. Sánchez, C. Ciuca, N. C. Nguyen, J. Peraire, and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350 (2017), pp. 951–973.ADSMathSciNetCrossRef M. A. Sánchez, C. Ciuca, N. C. Nguyen, J. Peraire, and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350 (2017), pp. 951–973.ADSMathSciNetCrossRef
29.
go back to reference Z. Sun and Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), pp. 109662, 25.MathSciNetCrossRef Z. Sun and Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), pp. 109662, 25.MathSciNetCrossRef
30.
go back to reference H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2), 36 (1935), pp. 607–629.MathSciNetCrossRef H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2), 36 (1935), pp. 607–629.MathSciNetCrossRef
Metadata
Title
Functional Equivariance and Conservation Laws in Numerical Integration
Authors
Robert I. McLachlan
Ari Stern
Publication date
20-09-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09590-8

Premium Partner